Visualization of Large Terrains Made Easy

Peter Lindstrom and Valerio Pascucci Lawrence Livermore National Laboratory

Hierarchical error + static data layout = large terrain visualization made easy.

- Hierarchical error computation:
 - Independent of error metric
 - Combined view culling
 - Near optimality
 - Asynchronous updates
- Hierarchical indexing:
 - Static data layout
 - Generic paging system
- Simple:
 - No explicit hierarchy
 - No priority queue
 - No specialized I/O system
 - No mesh data-structure (implicit stripping)

Level 0 (base mesh)

Level 1

Level 3

Level 4

Level 5

The stripping of any uniform refinement is the Sierpinski space filling curve.

Level 5

Level 0 (base mesh)

Do not rebuild. Just refine a single triangle

Must maintain:

- mesh topology
- priority queue

Root vertex

Selecting nodes on the basis of the error alone does not guarantee a valid mesh M.

Selecting nodes on the basis of the error alone does not guarantee a valid mesh M.

A hierarchical error metric overcomes the dichotomy of error vs. consistency.

We inflate the geometric error from δ to δ^*

$$\delta^* = \max \left\{ \delta, \delta_1^*, \dots, \delta_4^* \right\}$$

A hierarchical error metric simplifies the mesh construction and stripping.

The error projection can destroy the nested structure of the metric.

We inflate the projected error by replacing points with spheres.

Nested spheres yield a view dependent hierarchical error metric.

The view dependent hierarchical error metric is not far from the optimal.

VP 40

Nested spheres allow fast and simple integrated view culling.

 The culling test is performed only if the sphere of the parent intersects the boundary of the view frustum.

≤ 6 times dot product and comparison

A hierarchical error metric simplifies the mesh construction and stripping.

We develop a simple data layout based on quad-trees.

The vertices inserted at the even levels of refinement are the centers of each square and form a (white) quad-tree.

We develop a simple data layout based on quad-trees.

The black vertices inserted at the odd levels are the corners of each square and form a quad-tree if gray vertices are added.

We store the white nodes in place of the gray nodes.

We simply layout the data element level by level starting from

The index of Ci is computed from the index of the parent P

$$C1 = 4*v1-11+((2*v1+v2+2) \mod 4)$$

$$Cr = 4*v1-11+((2*v1+v2+3) \mod 4)$$

A hierarchical error metric simplifies the mesh construction and stripping.

We implemented the scheme with four alternative data layout schemes.

Practical comparison:

- Block
- ZH-order
- Quad-tree ->

Performance Tests

(5GB dataset on a 800MB SGI)

Performance Tests

(5GB dataset on a 800MB SGI)

Performance Tests

(1.25GB dataset on a 64MB PC)

Comparison of in core performance with respect to threading and culling.

Comparison of in core performance with respect to threading and culling.

Conclusions and future directions.

- ✓ Incore speedup 2X
- ✓ Sustained 40k per frame 30 HZ
- Good multithreading
- 1.5 Millions triangles per second
- Texture
- Mem efficiency
- Compression
- Explore more general 4-k meshes
- Geomorphing
- Add more sophisticate paging and prefetching

UCRL-PRES-154167

 This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

