Loops in Reeb Graphs Over 2-Manifolds

Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer, Vijay Natarajan, Valerio Pascucci

Motivation

- Description of surface embeddings
 [Yoshihisa, Kunii, & Kergosian], 1991
- Fast isocontouring[van Kreveld, et. al.], 1997
- Isosurface selection
 [Bajaj, Pascucci, & Schikore], 1997

Previous Work

- O(n²) algorithm.
 [Shinagawa & Kunii], 1991
- O(n log n) algorithm. Approximate. [Hilaga, et. al.], 2001
- Contour tree in O(n log n + t □(t)).
 [Carr, Snoeyink, & Axen], 2001
- Augmented Contour tree in O(n + t □(t)). Parallel algorithm.

[Cole-McLaughlin & Pascucci], 2002

Definition

A Morse function, f, over a manifold, M, is a real-valued function with distinct critical values.

■ The Reeb Graph, R, of f is obtained by contracting the components of $f^{-1}(x)$ to points.

Genus 2 Surface

Characterization of Topology

 Orientable surfaces are characterized by genus, g, and number of boundary components, h.

■ $M = S \# T \# \cdots \# T$ g torii.

Characterization of Topology

- Number of index k critical points of $f = c_k$ $\Box = c_0 c_1 + c_2$
- The k'th Betti number of $M = \text{rank H}_k(M) = \square_k$ $\square = \square_0 \square_1 + \square_2$
- Surjection from $H_1(M)$ onto $H_1(R)$.
- # of loops = rank $H_1(R) \le \text{rank } H_1(M) = \square_1$

Closed, Orientable Surafces

• # of loops in R = g.

- Construct R' from R with the same homotopy type.
 - Remove degree 1 node (index 0 or 2).
 - Remove degree 2 node (index 1).
- Count remaining degree 3 nodes.

Closed, Orientable Surfaces

• $n_3 = \#$ of degree 3 nodes in R'.

•
$$n_3 = c_1 - (c_0 + c_2) = - \prod_M = 2g - 2$$

• # loops of $R' = (n_3/2) + 1 = g$.

Open, Orientable Surfaces

Construct a closed surface by gluing h discs to each boundary component.

Gluing the discs either removes loops from R or not.

 $\blacksquare g < \# \text{ of loops} < 2g + h - 1 = \square_1$

Open, Orientable Surfaces

- Lower bound: No two boundary components intersect the same contour cycle.
- Upper bound: Example to the left realizes the upper bound.
- Every boundary component creates a loop in the Reeb graph.

Data Structures: Cycles, Paths.

Create/Destroy Cycles at extrema.

Cut/Glue Cycles/Paths at saddle points.

Problem: How to count Cycles/Paths?

Cut/Glue Operations

Isovalues:

 Solution: Store Cycles/Paths in an efficient data structure.

Inefficient operation: Find.

- Balanced search tree or randomized search tree.
 - Find has complexity O(log n).

 Store edges of Cycles/Paths at the nodes of the search tree.

At each saddle point use *Find* to decide which edges of *R* to merge or split.

Complexity O(n log n) to construct Reeb Graph.

Future Work

Is this algorithm optimal?

Reeb graphs over 3-manifolds.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.