
Real-time Monitoring of Large Scientific
Simulations

D. E. Laney
V. Pascucci, R. J. Frank, G. Scorzelli,

L. Linsen, B. Hamann, F. Gygi

This work was performed under the auspices of the U.S. Department of Energy by the University of

California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

We would like to enable real-time
monitoring of a running simulation with a

desktop workstation.

Turbulent mixing:
2048 ^ 3

Data post-processed
for visualization

Two ideas are combined in our
system.

• Multiresolution re-ordering of the data

• Real-time streaming of the reordered data.

• Monitoring via visualization of data or
derived-data.

A data streaming framework must utilize a
heterogeneous computational environment.

Data

Servers

Data Sources

Data Client

(Desktop Display)

Data

Server

Data Client

(Powerwall Display)

A brute force approach: send the data in
the order it occurs in the simulation.

• Disadvantages
• Bad cache coherence will slow down lower

dimensional queries (slices, isosurfaces).
• Stopping the stream early results in an unusable

partial data set.
• Requires preprocessing and delay if scalable

visualization is required.

We propose a new multiresolution
streaming system.

• Light weight:
• Only requires init() and send() calls.
• Not a problem solving framework

• Cache-oblivious out-of-core processing and
data streaming.

• Simple, scalable infrastructure.

Our approach enables a coarse-to-fine
construction of multi-resolution models.

Jeep run (Francois Gygi) of 64 carbon atoms, tiled
to 256^3 (final iteration). Computation on AIX
system, reordered data cached on SGI server,
viewed on my workstation (200MHz SGI).

We exploit the correlation of bin/quad/oct-
trees with the Lebesgue space-filling curves.

The Lebesgue curve is also known as Z-order, Morton, …. Curve.
Special case of the general definition introduced by Guiseppe Peano in 1890.

Progressive data streams enable
multiresolution visualization.

(a) (b)

(c) (d)

coarse data new level data

• On the fly
hierarchical Z-
ordering
– Embedded

preprocessing
– Fast computation

of hierarchical
index

– Stream can be
truncated

Our cache oblivious data layout optimizes
visualization queries.

• Data is laid out by
level and broken
into blocks.

• Simple load
balancing on
visualization side.

• Fast slicing,
isosurfacing, and
volume rendering.

The data layout generates increasingly
local coverage.

Distribution in the grid of each constant size block of data
0 1 2 3 4 5 6 7 8

We implement immediate streaming of
simulation data to the storage location.

Simulation Visualization System

Data Server 1Data Source 1

Data Source 2

Data Source N

Data Server 2

Data Server M

We exploit the data decomposition used
in the simulation.

B1 B2 B3 B4

B9 B10 B11 B12

B5 B6 B7 B8

B13 B14 B15 B16

• Takes advantage of
simulation load
balancing

• One Data Source per
compute node

• Each compute node
connected to all Data
Servers

Data Servers are buffering and caching
components.

Data Server 1Data Source 1

Data Source 2

Data Source N

Data Server 2

Data Server M

• Cache data and respond to visualization
queries

• Filter and buffer data to produce multi-
layer configurations

We achieve load balancing with a static data
decomposition.

• No contention
• No data duplication
• Streaming:

– D = I/d mod N
– D is Data server, I is HZ index of sample, d is chunk size

• Visualization queries:
– Choose number of Data Servers wisely

The load balancing of visualization queries
depends on the total number of data servers.

0
0.5

1
1.5
2

2.5
3

3.5
4

4.5

0 10 20 30 40 50 60 70 80 90 100

M
ax

 L
oa

d
/ I

de
al

 L
oa

d

Number of Data Servers

Optimal

The measured streaming time is small
compared to the compute time.

Number of Data Sources 1 8 64

Number of Data Servers 1 3 3

Total Domain Size 1283 2563 5123

Equivalent simulation time/time-
step

270s 736s 4224s

Send Time 5.31s 7.03s 38.6s

A progressive data stream enables
visualization on desktop workstations.

Progressive refinement (left to right) of the volume rendering of the electron
density distribution.

Data servers handle localized queries.

On a desktop machine you can explore the
finest resolution data available.

~ 8 billion
values

Future Work

• Extend to non-power-of-two grid sizes
• Extend to more general mesh structures
• Include fast compression between data

source and data server
• Enable multiple layers of data servers to

handle larger simulation sizes.

	D. E. LaneyV. Pascucci, R. J. Frank, G. Scorzelli, L. Linsen, B. Hamann, F. Gygi
	We would like to enable real-time monitoring of a running simulation with a desktop workstation.
	Two ideas are combined in our system.
	A data streaming framework must utilize a heterogeneous computational environment.
	A brute force approach: send the data in the order it occurs in the simulation.
	We propose a new multiresolution streaming system.
	Our approach enables a coarse-to-fine construction of multi-resolution models.
	We exploit the correlation of bin/quad/oct-trees with the Lebesgue space-filling curves.
	Progressive data streams enable multiresolution visualization.
	Our cache oblivious data layout optimizes visualization queries.
	The data layout generates increasingly local coverage.
	We implement immediate streaming of simulation data to the storage location.
	We exploit the data decomposition used in the simulation.
	Data Servers are buffering and caching components.
	We achieve load balancing with a static data decomposition.
	The load balancing of visualization queries depends on the total number of data servers.
	The measured streaming time is small compared to the compute time.
	A progressive data stream enables visualization on desktop workstations.
	Data servers handle localized queries.
	On a desktop machine you can explore the finest resolution data available.
	Future Work
	Binary Tree Indexing
	Binary Tree Indexing
	Binary Tree Indexing
	Binary Tree Indexing
	Multiresolution data streams enable multiresolution visualization

