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We would like to enable real-time 
monitoring of a running simulation with a 

desktop workstation.
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Two ideas are combined in our 
system.

• Multiresolution re-ordering of the data

• Real-time streaming of the reordered data.

• Monitoring via visualization of data or 
derived-data.



A data streaming framework must utilize a 
heterogeneous computational environment.
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A brute force approach:  send the data in 
the order it occurs in the simulation.

• Disadvantages
• Bad cache coherence will slow down lower 

dimensional queries (slices, isosurfaces).
• Stopping the stream early results in an unusable 

partial data set.
• Requires preprocessing and delay if scalable 

visualization is required.



We propose a new multiresolution 
streaming system.

• Light weight:
• Only requires init() and send() calls.
• Not a problem solving framework

• Cache-oblivious out-of-core processing and 
data streaming.

• Simple, scalable infrastructure.



Our approach enables a coarse-to-fine
construction of multi-resolution models.

Jeep run (Francois Gygi) of 64 carbon atoms, tiled 
to 256^3 (final iteration).  Computation on AIX 
system, reordered data cached on SGI server, 
viewed on my workstation (200MHz SGI).



We exploit the correlation of bin/quad/oct-
trees with the Lebesgue space-filling curves.

The Lebesgue curve is also known as Z-order, Morton, …. Curve.
Special case of the general definition introduced by Guiseppe Peano in 1890.



Progressive data streams enable 
multiresolution visualization.
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coarse data new level data

• On the fly 
hierarchical Z-
ordering
– Embedded 

preprocessing
– Fast computation 

of hierarchical 
index

– Stream can be 
truncated



Our cache oblivious data layout optimizes 
visualization queries. 

• Data is laid out by 
level and broken 
into blocks. 

• Simple load 
balancing on 
visualization side.

• Fast slicing, 
isosurfacing,  and 
volume rendering.



The data layout generates increasingly 
local coverage.

Distribution  in the grid of each constant size block of data
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We implement immediate streaming of 
simulation data to the storage location.

Simulation Visualization System
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We exploit the data decomposition used 
in the simulation.

B1 B2 B3 B4

B9 B10 B11 B12

B5 B6 B7 B8

B13 B14 B15 B16

• Takes advantage of 
simulation load 
balancing

• One Data Source per 
compute node

• Each compute node 
connected to all Data 
Servers



Data Servers are buffering and caching 
components.

Data Server 1Data Source 1

Data Source 2

Data Source N

Data Server 2
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• Cache data and respond to visualization 
queries

• Filter and buffer data to produce multi-
layer  configurations



We achieve load balancing with a static data 
decomposition.

• No contention
• No data duplication
• Streaming:

– D = I/d mod N      
– D is Data server, I is HZ index of sample, d is chunk size 

• Visualization queries:
– Choose number of Data Servers wisely



The load balancing of visualization queries 
depends on the total number of data servers.
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The measured streaming time is small 
compared to the compute time. 

Number of Data Sources 1 8 64

Number of Data Servers 1 3 3

Total Domain Size 1283 2563 5123

Equivalent simulation time/time-
step

270s 736s 4224s

Send Time 5.31s 7.03s 38.6s



A progressive data stream enables 
visualization on desktop workstations.

Progressive refinement (left to right) of the volume rendering of the electron 
density distribution.



Data servers handle localized queries.



On a desktop machine you can explore the 
finest resolution data available. 

~ 8 billion 
values



Future Work

• Extend to non-power-of-two grid sizes
• Extend to more general mesh structures
• Include fast compression between data 

source and data server
• Enable multiple layers of data servers to 

handle larger simulation sizes.
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