Global Static Indexing for Real-time Exploration of Very Large Regular Grids

Valerio Pascucci and Randall J. Frank

pascucci, rjfrank@llnl.gov

Lawrence Livermore National Laboratory
Outline

- Motivation
- Previous work (bla bla[vis`01], bla bla bla [sc`00] ……)
- Data layout
- 2^n tree indexing
- Performance for slicing large grids
- Conclusions and future work
We must achieve real-time interaction with large datasets on a wide variety of platforms.

The problem

- Extremely large datasets 0.5TB/timestep (8k,8k,8k,(time)).

- Interactive rendering for real-time data exploration.

- Target platforms: desktop, parallel server, cluster.
Previous Work

- **Out-of-core geometric algorithms**

 [Goodrich, Tsay, Vengroff, Vitter ‘93]

 [Vitter ‘00][Matias, Segal, Vitter ‘00]

 [Asano, Ranjan, Roos, Welzl ’95][Arge Miltersen ’99]

- **Out-of-core visualization**

 [Chiang, Silva ‘97][Sutton, Hansen ‘99]

 [Livnat, Shen, Johnson ’96][El-Sana, Chiang’00]

 [Bajaj, Pascucci, Thompson, Zhang ‘99]

- **Space filling curves**

 (image processing, multidimensional database, geometric datastructure …)

 [Bandou, Kamata.’99][Balmelli, Kovacevic, Vetterli ’99]

 [Parashar, Browne, Edwards, Klimkowski ‘97]

 [Niedermeier, Reinhardt, sanders ‘97][wise’00]

 [Hans Sagan ’94] [Lawder king ’00][Griebel Zumbusch ‘99]
We apply three fundamental techniques to the visualization of large simulation data.

Our approach

- Multi-resolution geometric representation:
 - adaptive view-dependent refinement;
 - minimal geometric output for selected error tolerance.

- Cache oblivious external memory data layouts:
 - exploit spatial and resolution coherency;
 - no need for complicated paging techniques.

- Progressive processing:
 - continuously improved rendering;
 - scalability with the resources without budgeting.
We focus on the progressive computation of slices (any orientation) of large 3D rectilinear grids.

- Rectilinear grid
- Sub-sampling octtree
- 1D order = hierarchical 3D Z-order curve
- Coarse to fine slice refinement
General Data Layout

Data coherent Progressive refinement of a hierarchical geometric data-structure

Grouping the data by level of resolution

Grouping the data by geometric proximity
General Data Layout

nD to 1D mapping:

\[I \rightarrow I^* \]

\[I \rightarrow l \] find the level of resolution \(l \)

\(C_I \) (pre)compute the number of elements in the levels coarser than \(l \)

\[I \rightarrow I' \] index of the element within its level of resolution

\[I^* = C_I + I' \]
We exploit the correlation of bin/quad/oct-trees with the Lebesgue space-filling curves.

The Lebesgue curve is also known as Z-order, Morton, …. Curve. Special case of the general definition introduced by Guiseppe Peano in 1890.
We turn the recursive definition of the Z-order curve into a hierarchical subsampling scheme.
We obtain a multi-resolution hierarchical representation which is not exactly a 2^n-tree.

- Not exactly a quad-tree …..
We obtain a multi-resolution hierarchical representation which is not exactly a 2^n-tree.

- Not exactly a quad-tree ……
We obtain a multi-resolution hierarchical representation which is not exactly a 2^n-tree.

- Not exactly a quad-tree …..
The 1D index I^* can be computed in a simple and efficient way in any dimension.

\[I^* = C_I + I' \quad C_I = 2^{2(l-1)} \quad I' = \left\lfloor \frac{I}{2^{2l}} \right\rfloor - \left\lfloor \frac{I}{2^{2(l+1)}} \right\rfloor - 1 \]
The 1D index I^* can be computed in a simple and efficient way in any dimension.
Overall the hierarchical Z-order yields a cache oblivious hierarchical data layout.
Theoretical analysis shows a gain of orders of magnitude independently of the block size.

Cache oblivious !!!

32K blocks

64K blocks
Real speedup matches theoretical expectations: more than 10x improvement, platform scalable.

- 2048x2048x1920 dataset (we have run up to 8192x8192x7680)
- 20MB memory cache
- Translation and rotation tests (average over 3 primary axis)
Conclusions and Future Work

Results: an implicit scheme for coherent spatial, multi-resolution regular grid data access
- Simple address remapping
- Read/write access
- No additional data overhead
- Supports progressive access

Near term applications
- Volume rendering
- Time critical iso-contouring

Future work
- “View dependent” parameterization
- Unstructured/temporal hierarchies
- Improved interpolation
- Distributed implementation
UCRL-VG-143542

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.