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Abstract

Multi-resolution techniques enhance the abilities of visualization
systems to overcome limitations in time, space and transmission
costs. Numerous techniques have been presented which concen-
trate on creating level of detail models for static meshes. Time-
dependent deformable meshes impose even greater difficulties on
such systems. In this paper we describe a solution for using level
of details for time dependent meshes. Our solution allows for both
temporal and spatial level of details to be combined in an efficient
manner. By separating low and high frequency temporal informa-
tion, we gain the ability to create very fast coarse updates in the
temporal dimension, which can be adaptively refined for greater
details.

1 Introduction

Complex time-dependent meshes are becoming more frequent in
animation sequences and arise also in many simulation processes.
These types of meshes are often viewed as a sequence of static
meshes and as such, impose greater demands on visualization sys-
temsin terms of rendering time and storage space. Multi-resolution
techniques of static meshes have been widely used and studied as a
means for overcoming time, storage and transmission restrictions.
Many decimation and refinement techniques were developed and
many spatial metrics defined for governing the quality and level of
detail of multi- resolution static models [7, 15, 13, 10].

In this paper we introduce a multi resolution model for dynamic
geometry sequence of meshes, which enables the combination of
both spatial and temporalevel of details to be employed. The
key observation is that mesh modifications over time can be sep-
arated to "low frequency” global affine transformations and ”high
frequency” local vertex deformations (Figure 1). The low fre-
quency information captures the most visually significant tempo-
ral displacements using a very coarse and inexpensive approxima-
tion. This approximation can in turn be refined adaptively using
the high frequency information as needed to create higher resolu-
tions and greater details in both time and space dimensions. Our
model combines three different adaptation strategies: applying the
low frequency temporal deformations over time, applying the high
frequency tempora deformations, and applying spatial adaptation
of level of details. This gives a visualization system the flexibility
to comply with awide range of timing restrictions.

The basis of our model is the TDAG structure (see [17] and
Section 2) defined for supporting multi-resolution time dependent
meshes. However, instead of encoding the original series of time
dependent meshes in the TDAG, we first extract the low frequency
deformations of the meshes, and encode only the resulting resid-
ual meshes. The TDAG stores all attributes and positional changes
of the residual meshes over time (the high frequency temporal de-
formations), and enables the extraction of different and adaptive
resolution meshes for each time-step (spatial adaptation).

Figure 1: Separating low frequency (left) and high frequency (mid-
dle) deformations. This’equation’ is simply an illustration of the
concept. The real calculation involves the multiplication of the
vertices of the high frequency mesh (middle) by an affine matrix
(which effect is symbolized by the left mesh).

1.1 Previous Work

It is far beyond the scope of this paper to describe the many ap-
proaches that have been developed for creating multi-resolution
representations of static geometric data for graphics and visualiza-
tion [7, 15, 13, 10]. In this paper we use edge contraction [8, 9] as
the decimation primitive and the Quadric error metrics [5]. Other
multi resolution schemes include vertex removal [1], triangle con-
traction [6], vertex clustering [16], and wavelet analysis [19, 2].
Similar to [4, 13, 1, 6] we organize the levels of detail structure as
a DAG (Directed Acyclic Graph). Each node in the DAG repre-
sents a decimation operation and the edges represent dependencies
between the different operations, which impose a certain partia or-
der for applying them on the mesh. Every cut (informally, a cut
is a group of edges that include one and only one edge from each
path from the roots to the leaves) in this DAG defines a valid adap-
tive level of detail of the underlying mesh. To date, most of these
schemes are based on the assumption that the finest resolution mesh
is static. Our scheme aims to define a level of detail in both time
and space for multi-resolution dynamic meshes.

Time dependent data structures which include hierarchical de-
compositions are presented in [20] for the extraction of iso-surfaces
from dynamic volumetric data, and in [18] for volume rendering.
These structures allows very efficient time-dependent iso-surface
extraction and volume rendering respectively, but are tailored for
these specific types of visualization primitives and do not deal with
general dynamic deformable meshes.

Earlier in [3], amodel for multi-resolution video was presented.
Temporal as well as spatial level of details were possible by using
abinary time tree where each node corresponds to some spatial av-
eraging of al the images of its time span. The node holds a spatial
quad-tree built from this average image. This structure supports
multi-resolution in the tempora dimension by accessing the aver-
age images, and seems very appropriate for video sequences. Our
approach covers more general meshes (considering images can be
viewed as planar meshes) and treats the temporal dimension alittle
differently: instead of averaging the meshes over time spans, our
temporal resolution defines the length of the interval s between each
time sample.



Recently efforts on behalf of the MPEG4 standard organiza-
tion [14] defined specific interpolators or behaviors for human fig-
ures or faces as well as rigid body transformations to efficiently
encode dynamic meshes. Dealing with general dynamic meshes
as in this paper was postponed for later dates. Moreover, 3D ge-
ometry compression either concentrate on static meshes [21, 22],
or assume low geometry bandwidth [12, 23]. In [11] amethod is
proposed for compression of time dependent geometry. The ver-
tex positions matrix is decomposed into P - V' - G, where P is the
time interpolation, V is the vertex positions at key time-steps and
G isthe geometry or spatial interpolation. The gross movement of
the geometric mesh is extracted from V and encoded with a small
set of controls. By separating the low and high frequency temporal
information the residual magnitudes are reduced. The gross move-
ment is encoded using affine transformations and the residuals are
quantized at low bit rate. Our method uses a similar approach for
separating low and high frequency temporal information, but uses
them at two different levels of temporal details.

The rest of this paper is structured as follows: in Section 2 we
briefly describe the TDAG structure, its construction and supported
queries. Separating low and high frequency temporal information is
described in Section 3, and the construction of the multi-resolution
model in Section 4. Section 5 discusses the possible uses of the
model and Sections 6 and 7 show an example and outline future
work.

2 The TDAG Structure

This paper focuses on triangular meshes. A triangular mesh M is
atuple M = (P, F,I) of vertices P = {p;} in E®, faces F €
P x P x P, and some vertex attributes I such as position, normal
and color. We consider a time-sequence of meshes:

Mg, My, My,

whereto < t1 < ... < tg. All mesh components, i.e. attributes,
positions and adjacency, become afunction of thetimet;:

My, = (PtiaFtnIti)

. The actua time values are irrelevant, and so we normalize the
time-steps to unitary intervals {¢; } — 1.

We classify the modifications between two consecutive meshes
M; and M4 into four levels: attribute changes (e.g. change
in vertex color), position changes (e.g. change in vertex posi-
tions), connectivity changes (changes to the set F'), and topological
changes (e.g. the genus of the mesh changes).

The TDAG (Temporal Directed Acyclic Graph) is a multi-
resolution data structure, which uses time-tags for al time depen-
dent information. In particular, it deals with the symbolic informa-
tion such as mesh connectivity and decimation dependencies in a
similar manner as the numeric information including the attributes
and positions of vertices (see Figures 2). The TDAG can encode
a large class of dynamic models, which include connectivity and
topology changes.

The construction of the TDAG is done incrementally using an
online agorithm. When each new mesh M;; in the sequence
is presented, it is merged into an existing TDAG which encodes
the meshes My, ..., M;. Thisis done by decimating M, (for
example, by edge contraction) using a metric function which com-
bines current spatial constraints (such as quadric error metric) with
global temporal ones. The hierarchy and attributes of the new time-
step are stored as time tagged fields of the nodes of the TDAG. The
local part of the metric function optimizes the structure of the level
of detail DAG for the current mesh, whilethe global constraints are
targeted at preserving the structure of the DAG as much as possible
over time. More details can be found in [17].
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Figure 2: The child linksin a T-DAG structure with five time-steps
(top), and the five DAGs it represents (bottom). Each child link

edge in the top T-DAG carries a tag depicting the range of time-
stepsin which it is active.

As a model for the dynamic meshes Mo, M1, ..., My, the
TDAG is parametric in two dimensions. resolution and time.
Therefore, every valid TDAG query must include these two param-
eters. There are two types of fundamental queries supported by the
TDAG: the random type queries and the incremental type queries.
Given (time =t,tol = €;), the random query returns an approxima-
tion M;* of the mesh M, which does not differ from M, by more
than e; under some given error metric. Incremental query in time
(resolution) will return M3, (M;> when ez # e1).

Although the model described in this paper can support all query
types, we will concentrate our discussion on progressive solutions
to the incremental time query. In such cases, the level of detail
mesh of current time-step is progressively updated to arrive at the
next time-step level of detail mesh.

3 Separating Low and High Frequency
Temporal Deformations

If we track the trajectories of each vertex in the time sequence
meshes My, M1, ..., My, it could be difficult to distinguish be-
tween global mesh movements (such asrigid body transformations)
and local fluctuations or deformations. In order to separate between
these low and high frequency deformations we want to map all
meshes to a uniform general position in space. We collect al n
vectors of homogeneous coordinates of the vertices of mesh M;
into aglobal 4 x n matrix V;. Similar to [11], we select either the
first time-step matrix Vo or an average mesh matrix (created by the
average vertex positions of all meshes over time) and search for Ay,
a4 x 4 affine matrix which is the best least square solution to the
equation:
AVo =V;

In practice, we solve the following equation and find A; for each
time-step ¢:
A= ViV (1)

Gathering, for al ¢, the affine coefficients of A; defines the
low frequency temporal information of the sequence Mo, M,
..., My. Applying A; on V; and using the connectivity defined
by M, gives a first crude approximation for the mesh sequence
(see Figure 5). The residual meshes RM; are found by applying
A7 on each Vi, mapping each mesh M; to the uniform position
of M (see Figure 6).

When topology or connectivity changes occur over time, we
must calculate the affine map by using a sub-set of vertices valid



in both V; and V,,. However, as will be described in Section 4, dy-
namic cut update is more difficult to implement in these situations,
and often the mesh will need to be reconstructed from the roots of
the DAG when a cut update is requested.

4 Hierarchy Construction

The multi-resolution TDAG imposes no restrictions on mesh defor-
mations over time in terms of connectivity and topology changes.
However, when the sequence of meshes do not change their connec-
tivity over time (and therefore, also their topology), it is possible to
use the same DAG structure for all time-steps. In this case, every
cut in this DAG defines avalid mesh in al time-steps. This enables
the use of an easy dynamic update algorithm of the cut, which cre-
atesthe current level of detail of the mesh by updating the previous
time-step cut (either expanding or contracting the cut depending on
the costs at the nodes of the new time-step).

In order to store all time dependent meshes using the same DAG
we need to use the exact same sequence of decimation operation for
all time-steps. Notethat this does not mean that the multi-resolution
model will be constant over time. As can be seen in Figure 3, the
same decimation operation may have different costs in different
time-steps. The reason for this is that the mesh attributes, which
effect the cost of decimation, change over time. This also means
that for the same tolerance in different time-steps we might get dif-
ferent cuts of the DAG, and there is aneed for updating the cut over
time even if the tolerance is constant.

In an online scenario, we start constructing the TDAG by deci-
mating M. If we choose to use the same DAG for all time-steps,
then this decimation determines the decimation order for all con-
sequent time-steps. We can try and minimize the amount of cost
changes over time if we abandon the online requirement for creat-
ing the TDAG. However, finding the set and order of the decimation
operations that will minimize the cost change and the total cost over
all time-stepsis avery complex and costly optimization problem.

As ameasure for the quality of decimation on all time-steps, we
examine the maximum cost reached over time for every specific
edge contracted. We then measure the average and median of those
maximums over all edges. If E isthe number of edges in the mesh,
let n; be the number of times edge ¢ was used (contracted in one
time-step mesh) during the construction of the TDAG. We define
N = Ef:1 n;. Let ¢;; be the cost of contracting edge ¢ at time-
step j. Wedefinec;; = 0 if edge ¢ wasn't contracted at time j. Our
average quality measure will then be:

E
21 max; (cij)
N

In our example (see Section 6) we used edge contraction and the
quadric error metric [5] and chose to compare between choosing
the first mesh, an "average” mesh (by averaging vertex positions
over dl time-steps) and an arbitrary mesh (number 277) to govern
the decimation of more than 300 time-steps. We also measured the
optimal decimation, where each mesh is decimated separately. The
result of decimating the chicken sequence using an ” average” mesh
was not significantly better than decimating according to the first
or to an arbitrary chosen mesh. In al of these cases the average
quality measure doubled compared to the optimal decimation (see
Figure 4). This stems from the fact that the high frequency defor-
mation of this sequence is large (see the figures in this paper) and
the ”average” mesh is as far from the other meshes as any arbitrary
mesh.

In this case (and probably aso in many dynamic cases), not
much is gained by using an average mesh to justify the abandon-
ment of the online algorithm. Moreover, if we examine the median
measure in Figure 4 it is much closer to the optimal case. This

means that most of the costs of decimations are actually not much
different from the optimal case. The large difference in the average
measure probably comes from higher levelsin the hierarchy of the
DAG, which are used in cases where quality is much less a factor
(e.g. when the mesh is very far from the viewer or for back faces).

Governing No. of Total Average | Median
Mesh decimations | decimations | Measure | Measure
First 2884 868084 2.14 0.666
Arbitrary 2890 869890 1.90 0.650
Average 2885 868385 219 0.687
Optimal - 865480 1.09 0.629

Figure 4: A comparison between different strategies for governing
the creation of the TDAG. In the first three lines al meshes were
decimated using the same edges and the same order which is gov-
erned either by the first, the average or an arbitrarily chosen mesh.
In the last line each time-step mesh is decimated separately opti-
mally. As can be seen, there is not much difference in choosing a
single mesh to govern the decimation, in all cases the average mea-
sure is about doubled with respect to the optimal. Therefore the
first mesh is as good as any other mesh to be chosen in an online
algorithm.

It isimportant to stress that the cost of decimation should be cal-
culated on the actual meshes My, M1, ..., M;, and not on the
residual meshes RM;. Thisis because the quality of approxima-
tion should be governed by the real mesh that will be displayed and
not the residual.

Before discussing the possible usage of our model we summarize
the online construction of the time dependent model. A mesh M,
from the sequence of meshes My, M1, ..., M, isencoded in the
following way: first, we extract and store A;, the affine transforma-
tion with respect to the first mesh. We then create the residual mesh
RM_ by applying A; ! to M. Then, we encode the positional and
attribute changes of RM,; from RM;_, inthe TDAG structure.

5 Level of Detail Utilization

Although level-of-detail models can be utilized to reduce the
amount of time-dependent updates (by restricting them only to ac-
tive vertices that are part of the current level of detail mesh), one
must remember that dealing with time dependent meshes means
the update of nodes attributes (position, color etc.) must be done
continually through time for correct rendering.

As stated earlier, we focus on incremental queriesin time: given
aspecific tolerance e governing the overall level of detail, and given
alevel of detail mesh for the current time step mesh M., we would
like to create the next time-step level of detail mesh approximating
M +1. The complete procedure for creating the new mesh approx-
imation involve three stages in the following order:

1. Updating the cut of RM;1 according to the costs at ¢ + 1
(and possibly aso a change in other parameters such as the
direction of, and distance from the viewpoint).

2. Updating the attributes and positions of the active verticesin
the resulting approximation residual mesh.

3. Applying the affine transformation A, +11 on the resulting
residual mesh.

Examining these three stages, it is evident that they are also
ranked by their complexity. Thefirst stagein creating the next time-
step mesh is the most complex and time consuming, and the last is
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Figure 3: The decimation cost of different edges as afunction of time: the x axisistime and they axisis cost. Each plot series represents the
cost of contracting one edge at different time steps. As can be seen, the cost can rise or drop depending on the local geometry of the mesh
when the contraction is performed (the bottom line shows some snapshots of the mesh closely bellow their position in time). Edges that are
part of the main body of the chicken tend to have smaller and more stable costs, while the cost of edges that are part of the wing or neck have

alarge jump in cost at the time of the surprised chicken.

the most simple and rapid. However, in terms of their visual signif-
icance, the last stage is the most significant and the first stage the
least.

The key ideain utilizing our multi-resolution model isto reverse
the order of execution of these stages. This is feasible since those
three stages can be carried out almost independently, resulting in
three levels of temporal approximations for the mesh:

1. The coarsest approximation is created using the previous time
step spatial level of detail mesh by applying the new time-step
affine transformation. Note that such operation can sometimes
be as simple as calling gl PushMatri x() and gl Mul t -
Mat ri x() in OpenGL.

2. A better approximation is created using the previous time-step
level of detail mesh, applying the affine transformation, and
also updating the attribute and position of the active vertices
that are shared by both time-steps. Hence, both the low and
the high frequency deformations are applied, but using the
previous time-step level-of-detail mesh instead of the current.

3. The best approximation is created by carrying out al the
stages of mesh creation: updating the cut, updating the at-
tributes of active vertices and applying the transformation.

The relative independence of the three mesh update stages can
also be utilized in a multi-threaded environment. The render-
ing thread, which reads the mesh and sends it down the graphics
pipeline, can be responsible for the low-cost operation such as the
affine transformations. The mesh creation thread, which writes the
mesh, can be responsible for the cut update. This scheme resem-
bles the internal double-buffer scheme of the graphics pipeline, us-
ing two working meshes - one for reading and one for writing and
swapping between them. Similar to the frame buffer, if the writing
thread lags behind in updating the cut, there will be no swapping of
meshes. When a specific frame rate is required the writing thread
can be tuned in advance to skip some time-steps and calculate the
cut for every other time-step, when the reading thread fills the gaps

with the affine transformations. Since the visua significant part of
thetemporal update will be carried out, the unpleasant artifacts such
as jumps in position, orientation and scale will be reduced. The
usual artifacts created by using multi-resolution models will still
need to be addressed. The implementation of such multi-threaded
rendering scheme s still under way and remains as future work.

6 Results

The chicken sequence of meshes display a chicken character cross-
ing aroad realizing atruck is heading towardsiit, turning and trying
to escape. The sequence includes 400 time-steps of 3030 vertices
and 5664 triangles each. An uncompressed binary representation
of the mesh takes around 14 megabytes and the TDAG and affine
maps around 37.5 megabytes. On a 500 Mhz Intel Pentium 3 with
128 Mb of RAM, it takes around 0.3 second to calculate the affine
map of each time-step and create the residual mesh and an average
of 30 seconds to merge a new mesh into the TDAG.

Figure 5 presents samples of the origina sequence of meshes
(top) and the low frequency tempora information represented by
applying the affine maps of each time step to the first mesh (bot-
tom). Note how the general structure of the mesh remains more
or less the same while the affine transformations change the posi-
tion, orientation and stretch of the object. Figure 6 presents the
sequence of meshes (top) and the high frequency temporal informa-
tion, which are the residual meshes created by applying the inverse
affine transformations of each time-step to the origina mesh. Note
in contrast to Figure 5 how the position and orientation remain con-
stant, while the local and internal deformations of the meshes are
revealed.

Lastly, Figure 7 shows examples of the results of the three lev-
els of approximations for the mesh: applying only the affine maps
(top row), applying the affine map and the attributes update (second
from top), and then also updating the cut (the bottom three rows
show level of detail created by three different tolerances)



Figure 5: Thelow frequency deformation information of the chicken sequence (top) is applied to the first time-step mesh, creating the bottom
sequence. Note that the mesh itself does not deform much, but its position, orientation and size (affine attributes) adhere to those of the
original sequence.

Figure 6: The application of theinverse of the affine transformation matrix to all meshes maps them to ageneral position, size and orientation
in space. Only the high frequency deformation information of the original mesh sequence (top) changes in the residual meshes (bottom).



Figure 7: Examples of the three approximation levels for a multi-resolution dynamic mesh. The top row shows the coarsest level by applying
just the affine transformations to thefirst time-step level of detail mesh. The second row shows the middle approximation by applying also the
attributes update on the first mesh. The bottom three rows are created using the full update procedure for each time-steps, but using a different
tolerance in each row. Note, for instance the differences in the triangles around the neck of the chicken in the different update schemes: in the

coarsest and middle approximation (top two rows), the set of triangles does not change. In the third row in particular, the update of the cuts
changes the set of triangles.



7 Summary

This paper presented a scheme for creating a level-of-detail model
for time dependent meshes, which alows the utilization of both
temporal and spatial level-of-detail approximations. This is made
possible by a specific decomposition of the temporal information
into low and high frequency deformations and the usage of amulti-
resolution model for the spatial information.

As discussed in Section 5 the advantages of using this scheme
can be exploited in a multi-threaded environment. The first item
in future extensions is the creation of a ”double meshed” multi-
threaded rendering system for time-dependent meshes. Other di-
rections include lowering the size of the TDAG file representation
by using fewer dependencies in the DAG, and exploiting the high
temporal coherency in the TDAG for the use of some compression
mechanism.
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