Multi-Resolution Dynamic Meshes with Arbitrary Deformations

Ariel Shamir Valerio Pascucci Chandrajit Bajaj
The Center for Computational Visualization
TICAM, University of Texas at Austin

January 14, 2000

Abstract

Multi-resolution techniques and models have been shown to be effective for the display and trans-
mission of large static geometric object. Dynamic environments with internally deforming objects pose
similar challenges in terms of time and space and need the development of similar solutions. We present
the T-DAG, an adaptive multi-resolution representation for dynamic meshes with arbitrary deformations
including attribute, position, connectivity and topology changes. We also provide an on-line algorithm
for constructing the T-DAG, enabling the traversal and use of the multi-resolution model for partial
playback while still constructing it.

1 Introduction

Dynamic scenes in computer graphics are defined by associating some of the scene parameters with a func-
tion of time. Global parameters like the position of the viewer (walk-through) or the position of objects can
be encoded easily using rigid body transformation or interpolators and behaviors [15]. Local deformations
of objects are generally much more complex and more time and space consuming. Multi-resolution tech-
niques have been shown to be an effective tool for handling the complexity of geometric objects. However,
most of the work done in this field concentrates on static objects. Moreover, the application of previous
proposed solutions for dynamic models is restricted to objects in which the connectivity and topology are
fixed over time. We introduce a new multi-resolution representation scheme for dynamic geometric objects
where no restriction is imposed on the modification through time in terms of their connectivity or topol-
ogy. We also present an algorithm for on-line construction of the multi-resolution model over time. This
allows traversing the the multi-resolution model of previous time-steps while still augmenting the model,
in each time-step, with the newly modified object. Our scheme extends the possibility of using adaptive
multi-resolution techniques for display and transmission of general deformable time-dependent meshes.

1.1 Previous Work

There are many approaches for creating multi-resolution representations of geometric data for graphics and
visualization [8, 11, 14, 16]. They vary in both the simplification scheme like vertex removal [1], edge
contraction [9, 10], triangle contraction [7], vertex clustering [17], wavelete analysis [2, 20], and in the

structure used to organize the levels of detail (either linear order [9,11] or in a DAG [1,5,7,14]). However,
these works assume the finest resolution mesh is static and build a static multi-resolution representation. Our
scheme draws from many of them and defines a model for applying them through time, when the underlying
geometric mesh is dynamic.

A time dependent data structure for use in the extraction of isosurfaces from large time dependent data is
presented in [21]. Atemporal branch on need tree (a type of an octree) is created to index the data spatially.
Extreme isovalues in each node of the hierarchy are computed for each time step and stored separately.
This structure is then used to support queries of the fiimestep,isovalpy traversing top down and
branching only those parts that hold the correct isovalues for that time-step. When a leaf node is reached,
the block containing its data is stored in a list. Once the traversal is done, only blocks in the list are read
and the isosurface computed. While this structure seems to be very efficient for isosurface extractions from
time varying data sets, it supports only this specific visualization primitive. It does not apply to meshes
where connectivity can change, and it must be built off-line by preprocessing. For volume rendering of
time dependent data [18] use a spatial octree to partition the data, but each node holds a binary time-tree.
Each node in the binary tree holds the average value of the containing octree node sub-volume, along with
measurements of the spatial and temporal errors of these pixels in the corresponding time range. These
measures serve as an indication of the spatial and temporal coherency of the sub-volume. The structure
supports queries of the for(timestep,spatial-err,temporal-etr)The octree is then traversed from the root
expanding only the nodes that do not pass the tolerance test. In each node the binary time-tree is traversed
in the same manner. The rendering of each octree-node volume is done separately and the sub-images are
composited using their colors and opacities to create the full image. This structure allows very efficient
time-dependent volume rendering, but is tailored for this specific type of visualization and does not support
change in connectivity or topology of the mesh.

An opposite approach was presented earlier in [3] for multiresolution video. A binary time tree is built
by subdividing the time span. Each node corresponds to some averaging of all the images of its time span.
The node holds a spatial quadtree built from this average image. This structure supports multi-resolution in
the temporal dimension by accessing the average images, and seems very appropriate for video sequences.
However, the fact that it is not clear how to define the average of several time-dependent surfaces, especially
when topology and connectivity could change over time, means such an approach is difficult to apply on 3D
meshes.

We generally use the more conservative approach of viewing time sequentially and supporting multi-
resolution in spatial dimension. However, since we separate the temporal information of each vertex, there
is no restriction to store this information consecutively. In fact, and any type of multi-resolution can be
defined for this data similar to the binary trees of [18]. Another option is to use compression in temporal
space. In [12] a method is described for compression of time dependent geometry. The vertex positions
matrix is decomposed int® - V - GG, where P is the time interpolation, V is the vertex positions at key
time-steps and G is the Geometry interpolation or spatial interpolation. Using those terms, [12] concentrates
on compressing thE matrix, and we concentrate on encoding thenatrix using multi-resolution methods.
Therefore both works are somewhat complementary, and might be combined.

1.2 Contribution

We define a multi-resolution data structure using time-tags for time dependent traversal. In particular we
treat the symbolic information (mesh connectivity and decimation dependencies) in a similar manner as we
treat the numeric information (attributes and positions of nodes). We show how this extended data structure
enables the representation of a larger class of dynamic models including also connectivity and topology
changes.

We present an algorithm for on-line building of this data-structure. The incremental construction enables
the use of the data-structure (of previous time-steps) even while the input is being processed. Moreover, this
algorithm enables adjusting the resulting structure according to the tradeoff between optimized storage space
and traversal time in each time-step for the creation of meshes.

2 Preliminaries

2.1 Meshes

As customary in computer graphics we assume that objects are represented by triangular surface meshes.
This assumption also enables us to include other objects such as scientific simulation meshes in our discus-
sion. We define a mesM by a tupleM = (P, A, I). P = {p;} is a collection of points embedded %
callednodesor vertices A : P x P — {0, 1} is a relation called adjacency, which defines the connectivity
of the mesh. This relation also imposes a certain topology on the object defined by the mesh (number of
connected components, genus of each componény.{f;} is a collection of functions called attributes
defined over the nodes of the mesh, such as 'color’ or 'temperatfjre’{ — R), or “texture coordinates”
(f; : P — R2). Note that although we restrict our discussion to objec®inthe multi-resolution model
and construction algorithm can support objects in any dimension.

We call I and P the numerical information of the mesh, addalong with the decimation dependencies
(see section 2.3), the symbolic information.

2.2 Dynamic Meshes

Consider a sequence of time dependent meshes:
Mg, My ooy My,

wherety, < t1 < ... < tx. The time dependency means that all mesh components, i.e. attributes, po-
sitions and adjacency, become a function of timkg, = (P, A¢,, I;;). For our purposes the actual time

is irrelevant, and so we can map the time-steps to discrete inteisdls— i. Therefore, we examine the
changes between two consecutive meshgsand M, 1, and distinguish between different possible levels

of change:

1. Attribute changesP; = P, andA; = A;q, butl; # I; 4.

2. Position changesd; = A;,1 butP; # P, andl; # I;14.

3. Connectivity changesd; # A;.+1, P; # P;y1 andI; # I;1, but the topology of the object does not
change.

4. Topological changesd; # A;+1, P, # P41 andI; # I;+1, and no restriction on the topology is
given.

This broad notation covers a large class of possible dynamic meshes defined in animation, graphics and
scientific simulation. This includes any key-framing animations and finite-element simulations of dynamic
systems featuring attribute and positional changes. It includes continuous affine transformations and free
form deformations, by sampling the modification function over time, and creating a sequence of changing
meshes. But it also includes dynamic meshes with more drastic changes such as creation and closing of
holes, splitting and merging.

The higher modification level a representation scheme can support the larger the class of meshes it can
represent, and the greater its expressive power is. An important factor in the definition of our scheme was the
ability to support all different levels of dynamic change without sacrificing too much the ability to optimize
the representation for models with lower levels of dynamic change (for example by using quantification of
attributes or compression of geometry positions).

2.3 Multi-Resolution Model

A multi-resolution mesh representation for a geometric objeGtis a representation that embodies a set of
mesheg M!, M2, ...} each of which is in turn a representation fot. These representations can be seen
as different approximations of the original object according to some tolerance.

One popular way of creating a multi-resolution model is by decimating an initial sv¢$tom bottom
up. In very general terms this involves three primary decisions: 1. Selecting a decimation primitive, 2.
Defining an error (estimate) for priority of decimation and traversal, and 3. Choosing the multi-resolution
data-structure. Once these parameters are established, a multi-resolution model can be built by inserting alll
decimation elements into a priority queue, repeatedly choosing the first element, applying the decimation to
the mesh, and recording it and its error in the data-structure.

In a sequential model, the sequence of discrete modifications (decimation operations) is recorded in
a linear data structure. According to the direction of traversal and the current approximation, a series of
operations from this sequence is performed on the existing mesh either from coarse to fine or from fine
to coarse. In the graph model ([1, 5, 13]) simplification is performed in multiple levels where each level
includes only independent decimation operations (see Figure 1). Further dependencies between decimation
operations of different levels are stored as a DAG (Figure 2). A cut in this graph is a collection of edges,
which intersect all paths from the root to the leaves once and only once. Any such cut represents a valid
multi-resolution approximation of the model [4] (Figure 3). The DAG model allows greater flexibility in
generating adaptive approximations, which were not explicitly constructed during the simplification. An
outline of the algorithm for creating a DAG based multi-resolution model is presented in Figure 4.

Once the DAG is constructed, a mesh representation can be generated by traversing the DAG from the
roots towards the leaves. At each step, the error stored at the current node is compared with a given error
tolerance. If this tolerance is not met, the cut is advanced from this node to its children nodes, reversing their
decimation operations and checking them in the same manner. In order to create coherent triangulations, a

node can be included in the cut only if all its parents are already in the cut (and not only the parent from
which this node was reached). This is corrected by recursively checking and adding all the parents of a node
before visiting it.

Figure 1. Vertices A and B can not be independently decimated using vertex removal operation (left).
Vertices A and C can (right).

Figure 2: Building the DAG as a model for
multi-resolution of a mesh. Each node in-
cludes information regarding a specific decima-
tion (vertex removal in this case) and dependen-
cies between the regions in the nodes are en-
coded as arcs in the DAG.

&
B>
()

Figure 3. All possible approximations of the
mesh of Figure 2 and the respective cuts in the
multi-resolution DAG.

Our multi-resolution time-dependent model extends the graph-based approach. This means that in ad-
dition to the attributes, positions and connectivity information, the dependencies recorded in the graph are
also time-dependent.

3 Dynamic Multi-Resolution Model

In order to define the dynamic multi-resolution model we need to have some correspondence mapping
between the vertices of the mesh in the consecutive time-steps. One simple approach to accomplish this
is to assume each vertex can be identified precisely through timeMgeiM ., ..., M, be the dynamic
sequence of meshes. This mapping means that & M, andp; € M, then: = j iff p; andp; are
considered the same vertex in different time-stepafidt,, respectively). In other words, new vertices can
appear through time and old vertices can be removed, but each new vertex must have a distinct identifier,

5

DecimateLevelg M, G, tol)

M is the initial fine resolution mesh

G is the DAG of decimation operation

tol is some external predefined tolerance

() is a priority queue of decimation elements

loop until M is coarse enough {
clear dependencies for this level
fill @ with decimation elements from M

while @ is not empty {
e=Q — first()
if e is marked as dependent
continue
if e — cost() > tol
break
ApplyDecimation(e, M, G)
}
raise tol
}
ApplyDecimation(e, M, G)
{
mark all elements dependent on e
decimate M using e
store decimation in G
store e dependencies in G
update (@ if needed

Figure 4: An outline of the algorithm for creating a DAG based multi- resolution model:dtparameters
governs the error and stops decimation at each level if the error is too large. However, it is gradually
increased as the levels increase in order to continue the hierarchy.

and the identifiers of removed vertices cannot be reused. This restriction can simplify both the structure
and implementation of the algorithms. Additional conditions under which an index can be reused are also
possible but tend to become complex in an on-line manner. The underlying assumption is that although
dynamic changes are involved, most of the meshes have similar sets of vertices (the worst case means each
time-step will have a separate vertex set).

Furthermore, we need a similar mapping between vertices of different levels of approximation. There-
fore, we restrict our choice of decimation operation to those, which preserve a mapping between the vertices
before and after applying the operation. For example, vertex removal, half-edge contraction, or general edge
contraction when one of the vertices is mapped to the new vertex (along with a positional change), all com-
ply with this restriction. LetM’ be a mesh, and let1**! be a mesh created by applying such decimation
operator taM?, then we get?’*! C P?. This implies that the total number of nodes in the DAG is exactly
the number of vertices in the original finest resolution mesh.

Once these restrictions are met, we can identify each node in the DAG with some specific vertex in the
dynamic changing mesh. This node signifies the decimation operation connected with this vertex (e.g. the
removal of this vertex or the contraction of an edge adjacent to it). We then attach all the numeric vertex
information and symbolic graph information as fields to this node:

e Vertex attributes.

e \ertex positions.

e \ertex decimation error.
e Parent links in the DAG.
Child links in the DAG.

We then treat all the fields in the same manner, converting them to a function of time. This is done by
attaching a time-tag in the form of a ran@e;) to each value in the field. This range defines the continuous
time range(t;, t;) where this value islive in this field. Fields such as error estimation, node coordinates or
color attributes have only one value alive at each time-step. However, the parent and child links of the DAG
may have many different values alive at the same time. The collection of these values for a specific time
define the structure of the multi-resolution DAG at timje(see Figure 5). We call the collection of all the
nodes in all time-steps tiEDAG. It is important to note that the DAG constraints are only true for discrete
time-steps encoded in the TDAG. Nodg in the TDAG might be a child of node; at one time-steprg
can be a parent of; in another time-step, and there can be no path between them in yet another time-step.

In addition to the nodal values, an array of root indices is stored in the TDAG in the same manner as
parent and child links are stored in the nodes (each value holds a time range tag). The TDAG then supports
gueries of the fornftime-step,error-tol) and returns an approximated mesh for that time satisfying that error
tolerance. This is done using basically the same algorithm for top down construction of a mesh from a static
multi-resolution representation. Starting from all live roots for this specific time, the graph is traversed top
down and at each node the error tolerance is checked. The only difference is that the algorithm must use
only live links in the nodes to children or parents for traversal. Other attributes and position information
used for example, for rendering the object, are accessed as a function of time, allowing simple modification
of the shape and appearance of the mesh through time.

7

N

Figure 5: A TDAG with five time-steps, and the DAGs encoded in it.

Since for each time-step an approximating mesh is constructed according to some tolerance, there is no
need to explicitly store any mesh connectivity or topological changes in the TDAG. These changes will be
encoded implicitly in the graph dependencies while constructing the TDAG.

4 On-line T-DAG construction

The first observation concerning the definition of the TDAG is that any sequence of multi-resolution DAGS,
which preserve the previously mentioned mapping restrictions of vertices, can be encoded in a TDAG. Let
Moy, Mq,..., M be a dynamic sequence of meshes, MRy, MR ,..., MR, be multi-resolution

DAGs created for them. If these meshes preserve the mapping restriction, then we ca®defingv €

M;for somei}, P is the union of all vertices in all time-steps. We define a node in our TDAG for each such
vertex, and encode alMR; meshes using these nodes. Obviously, this scheme is practically equivalent to
the worst case of building and storing eattiR; separately. This scheme favors optimizing each specific
time-step in terms of traversal time, if a certain error is requested, or the quality of the mesh, if time is the
restriction.

The opposite extreme is to use just a single DAG for all time-steps by encoding only the different
decimation error in different time-steps. This scheme can actually be beneficial in some cases (See for
example Figure 8). However, because a single DAG will not have an optimal structure for all time-steps,
this will generally force the traversal to reach down to lower levels of the graph in order to satisfy a given
error tolerance. This means sacrificing traversal time or quality to gain lower storage space (only a single
DAG).

The key to constructing a good TDAG both in terms of storage-space and traversal, would be to try and
merge more efficiently the distinct DAGs of each time-step into a single TDAB)(

TD=MRo+ MRy + -+ MR,
It would be even more beneficiary, and possibly more feasible if it could be done incrementally:

TD;y1 = TD; + MRy, Where TDy = MR

Creating the DAG of time-stept+ 1 MR;1 and merging it with the previous TDAGD; might involve
complicated graph matching problems. Instead, the key idea behind the incremental TDAG construction
algorithm is to create at each time-step a multi-resolution DAG using decimation which will conform to the
existing TDAG. This is done by using an enhanced priority in the decimation process, introducing some
history considerations augmenting the regular priorities of decimation cost. These considerations aim to
preserve the structure of the previous time-steps TDAG.

The algorithm uses the history of the previous time-step decimation order. A decimation operation from
the history is extracted using some poligetElemen()), and its cost is compared to the cost of applying
the same decimation on the current mesh. If the difference is too lamgeDiff)= true), this decimation
is skipped, otherwise it is performed and recorded for the next time-step. Due to changes in topology or
connectivity, some decimations from the previous time-step cannot be found in the current queue, and so
they are skipped. Other decimations are possible only on the current mesh, and so the algorithm performs
them at the end of each level. An outline of the algorithm is given in Figure 6.

The function getElement() defines the policy in which the previous time-step decimation is examined.
According to our tests the best policy was to examine the decimations of all levels up-to and including the
current level of decimationlgrgeDiff (previouCost, currentCost)) was usually set to be:

previousCost — currentCost > factor x currentCost

with factor = 1/10.

Figure 7 illustrates a comparison between decimations of consecutive time-steps of the balls in Figure 10.
As can be seen, most of the decimations are carried across the timesteps, and therefore, without sacrificing
traversal optimization too much, we can get large overlaps between DAGs of different time-steps and gain
in storage.

The construction algorithm augments the TDAG incrementally. This means that the algorithm can be
used online, and the TDAG of previous time-steps can be used for display and interaction, while the next
time-step is being introduced. This fact is important specifically when the time span of the dynamic model
is long or being generated on a remote server. The user does not need to wait until the whole processing is
done (or even the whole process of creating the dynamic model is done), but rather he can view intermediate
results as soon as they are included.

5 results

In this section we examine several examples for the use of a TDAG. We show the flexibility of the model and
the ability of the construction algorithm to encode time-dependent information with different restrictions.

In the first example (see Figure 8), we look at a simulation of two sub-atom particles colliding over
a 2D mesh. This simulation tracks several attributes changing over time (e.g. density, electrostatic field).
Under these conditions, defining an optimal decimation for all variables could be difficult. Moreover, if new
attributes were introduced, this would mean recalculation of the whole structure from the first time-step.
Instead, we chose to use a purely geometric condition to govern the decimation process. Using random
vertex removal, we preserve at each step a Delaunay triangulation (this scheme was presented in [1] for
static terrain meshes). On average, the Delaunay triangulation gave good results for all different attributes.
The real advantage of using such a scheme is the fact that a single DAG is used for all time-steps and all

9

DecimateConform(M, T D, tol, time, Hin, Hout)
{

M is the initial fine resolution mesh

TD is the TDAG of decimation operation

tol is some external predefined tolerance
time is the current time-step

Hin is the previous order of decimation
Hout stores the current order of decimation
() is a priority queue of decimation elements

swap Hin and Hout

loop until M is coarse enough {
clear dependencies for this level
fill @ with decimation elements from M
while e = Hin—getElemen{)
find € matching e in @ ApplyDecimation(e, M, T'D, Hout)
if ¢ is not found or {
e’ is marked as dependent or mark all elements dependent on e
largeDiff (e’ — cost(), e — cost()) decimate M using e
continue store decimation in T D(time)
remove ¢ from Q@ store e dependencies in T D(time)
ApplyDecimation(e, M, TG, Hout) store e in Hout
} update () if needed
while @ is not empty { }

e=Q — first()

if e is marked as dependent

continue
if e — cost() > tol
break
ApplyDecimation(e, M, T'D, Hout)
}
raise tol

Figure 6: An outline of the algorithm for creating a multi-resolution TDAG model. Two external functions
govern the degree of conformity between consecutive time-stgetElement from the history storage
andlargeDiff to check the difference in the cost of the decimation. The algorithm first tries to decimate
conforming to the previous time-step, and only then reverts to its own priority queue. At each time-step the
decimation order is recorded and used in the next time-step by swapping the inHistory and outHistory

10

i
I

1
v
I

B

2-3

Figure 7. Comparison between decimation order of consecutive time-steps using the TDAG construction
algorithm. The decimations are laid out from top to bottom, white spaces signify the same decimation, but
links across levels can show that the decimation order is not always preserved. Also, due to connectivity
changes there are some decimations that occur only at the left (red) or right (yellow). For comparison, the
leftmost orders were created by decimating each time-step independently (A) or by fully conforming to the

previous time-step order (B).

attributes. The different triangulations extracted over time are a result of the differences in the numerical
information stored in the TDAG (the errors imposed by the decimation).

The price for the efficient storage in the previous example is paid at traversal time. Nodes at lower levels
in the DAG need to be visited in order to satisfy a certain error tolerance. In fact, when we move to 3D
surfaces, additional tests are necessary beside checking the approximation error when traversing the DAG.
For example, in order to preserve correct embedding of the surface, triangles in the neighborhood of the
decimation need to be checked for orientation changes, global intersections should be tracked, etc. [19].
These types of tests could involve heavy computation, being too time consuming to be practical at traversal
time. However, if these tests are carried out during the construction stage of the TDAG, verifying that all
cuts in all time-steps satisfy the tests, the traversal time is greatly reduced.

In the second example we encode a sequence of dynamic changing meshes created by two waves col-
liding (using 7200 faces). We use half-edge contraction as the decimation primitive and the quadratic error
metric for tracking decimation cost [6]. During decimation, we penalize the cost of contractions that cause a
change in triangle orientation, and omit such checks during traversal. The TDAG constructed then supports
faster adaptive multi-resolution viewing for all time-steps (Figure 9).

In cases where the connectivity or topology of the dynamic mesh changes, the differences of the sym-
bolic information through time must be encoded. The last example (Figure 10) shows a ball splitting (or
two balls merging) with 12,800 faces. The multi-resolution hierarchy was built with quadratic error metric
using half-edge contraction. In this case the finest resolution triangulation has different connectivity in most
time-steps and there is also a discrete change in topology at one time-step. In fact, using the TDAG model
these changes were encoded implicitly and seamlessly by the construction algorithm.

11

Figure 8: A simulation of collision between two sub-atomic particles encoded in a TDAG. The simulation
tracks the interaction of several different variables over 50 time-steps (shown at the enclosed video). The
TDAG was built using random vertex removal preserving Delaunay triangulations. This means the symbolic
information for all time-steps is the same, but the numerical information is different. The TDAG extracts
different triangulations due to the difference in errors over time (top to bottom), difference in tolerance (1%
at (a) and (c) and 10% at (b) and (d) sub-columns) and for different variables ((a),(b) show density and
(c),(d) show electrostatic scalar field potential).

12

(9) (h)

Figure 9. Mesh created by two moving wave fronts. The top row (a) to (d) show several time-steps (from the
sequence shown at the enclosed video), the bottom row (e) to (g) show several resolutions of one time-step,
and (h) an adaptive triangulation extracted with a viewing focus point at the lower left corner (hence, higher
resolution at the corner).

6 Conclusions and Future Directions

Dynamic environment including deformable models are becoming more common as the ability to display
high-end graphics evolves. These models are larger and more complex than static geometric models, and
therefore necessitate further use of multi-resolution techniques. In this paper we presented TDAG, a multi-
resolution representation for dynamic meshes with arbitrary change. This model is flexible enough to encode
models ranging from the use of a single DAG for all time-steps to more complex graphs with connectivity
and topology change. The construction algorithm is simple enough to be used with many types of decimation
operations, yet itis powerful enough to seamlessly encode topology and connectivity changes in the dynamic
meshes.

There are several possible extensions for this work. The TDAG structure evolves through time in coor-
dination with the meshes around the current time-step. Although the amount of time-dependent information
in each node of the TDAG could be large, if one concentrates on a certain 'window’ of time-steps, the live
information is much smaller. This fact could be used, for instance, to support out-of-core multi-resolution
dynamic models, enabling efficient decomposition of the data into viewing 'windows’ of time-steps which
can fit into memory. Also, since the temporal information is gathered in the TDAG, temporal coherency
could be exploited for compression.

Another possibility is to use the TDAG to apply time-dependent constraints for multi-resolution in the
same manner as view- and space-dependent constraints are used. For example, an object which moves or
deforms rapidly could be displayed in lower resolution than an object which deforms slowly.

13

Figure 10: A merging or splitting ball mesh sequence. The top row shows several time-steps (shown at the
enclosed video). The middle row shows the starting and ending meshes which have different topology and
connectivity at both high and low resolution. The bottom row shows detail of the balls intersection curve

at various resolutions. Note that this curve is not a boundary curve but rather a set of internal edges in the

mesh.

14

References

[1] M. de Berg and K. T. G. Dobrindt. On levels of detail in terrainG&raphical Models and Image
Processing60:1-12, 1998.

[2] M. Eck, T. DeRose, T. Duchamp, T. Hoppe, H. Lounsbery, and W. Stuetzle. Multiresolution analysis
of arbitrary meshes. IACM Computer Graphics Proceedings, SIGGRAPH |@ages 173-180, 1995.

[3] A. Finkelstein, C. E. Jacobs, and D. H. Salesin. Multiresolution videoA@M Computer Graphics
Proceedings, SIGGRAPH'9fages 281-290, 1996.

[4] L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface at variable resolution. In
Proceedings of the IEEE Visualization Conference VISi#ages 103-110, 1997.

[5] L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexeBrdoeed-
ings Symposium on Spatial Databasdsng Kong, China, July 1999.

[6] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In Turner
Whitted, editor,SIGGRAPH 97 Conference Proceedingsnual Conference Series, pages 209-216.
ACM SIGGRAPH, Addison Wesley, August 1997.

[7] Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gregory L. Schussman, and Issac J. Trotts. Construct-
ing hierarchies for triangle meshedEEE Transactions on Visualization and Computer Graphics
4(2):145-161, April 1998.

[8] P.Heckbert and M. Garland. Survey of polygonal surface simplification algorithrdsCi Computer
Graphics Proceedings, Annual Conference Series, SIGGRAPH’'97, Multiresolution Surface Modelling,
Course Notes No. 23997.

[9] H. Hoppe. Progressive meshes. ACM Computer Graphics Proceedings, SIGGRAPH’'péges
99-108, 1996.

[10] H. Hoppe. Smooth view-dependent level-of-detail control and its application to terrain rendering. In
Proceedings IEEE Visualization’9pages 35-42. IEEE Comp. Soc. Press, 1998.

[11] R. Klein and J. Kramer. Multiresolution representations for surface mesheBroteedings of the
SCCG 1997.

[12] J. E. Lengyel. Compression of time-dependent geometiyrdneedings of the 1999 ACM Symposium
on Interactive 3D GraphicsAtlanta, Georgia, April 1999.

[13] Paola Magillo. Spatial operations on multiresolution cell complexes (phd thesis). Technical Report
DISI-TH-1999-03, Dipartimento di Informatica e Scienze dell'Informazione, University of Genova,
Italy, 1993.

[14] A. Maheshwari, P. Morin, and J. R. Sack. Progressive tins: Algorithms and applicatioRsodeed-
ings 5th ACM workshop on Advances in geographic information systeasd/egas, 1997.

15

[15] INTERNATIONAL ORGANISATION FOR STANDARDISATION CODING OF MOVING PIC-
TURES and AUDIO ISO/IEC JTC1/SC29/WG11 N2995. MPEG4 standard specifications
http://drogo.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm edition.

[16] J. Rossignac and P. Borrel. Multi-resolution 3d approximation for rendering complex scenes. In B. Fal-
cidieno and T. Kunii, editorsiGeometric Modeling in Computer Graphjgsages 455-465. Springer
Verlag, 1993.

[17] William J. Schroeder. A topology modifying progressive decimation algorithm. In Roni Yagel and
Hans Hagen, editor$EE Visualizatior®7, pages 205-212. IEEE, November 1997.

[18] H. Shen, L. Chiang, and K. Ma. A fast volume rendering algorithm for time-varying fields using a
time-space partitioning (tsp) tree. Rroceedings of the IEEE Visualization Conference VIS{2@es
371-378, 1999.

[19] O. G. Staadt and M. H. Gross. Progressive tetrahedralizatioriRtobeedings of the IEEE Visualiza-
tion Conference Vis9Q®ages 397-402, 1998.

[20] E.J. Stollnitz, T. D. DeRose, and D. H. Salesitavelets for Computer GraphicMorgan Kaufmann
Publishers, 1996.

[21] P. M. Sutton and C. D. Hansen. Isosurface extraction in time-varying fields using a temporal branch-
on-need tree (t-bon). IRroceedings of the IEEE Visualization Conference VIS{@yes 147-154,
1999.

16

