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Finding Line Segments with Tabu Search

Concettina GUERRA† and Valerio PASCUCCI††, Nonmembers

SUMMARY The problem of detecting straight lines arises
frequently in image processing and computer vision. Here we
consider the problem of extracting lines from range images and
more generally from sets of three-dimensional (3D) points. The
problem is stated as follows. Given a set Γ of points in 3D space
and a non-negative constant ε, determine the line that is at a
distance at most ε from the maximal number of points of Γ. The
extraction of multiple lines is achieved iteratively by performing
this best line detection and removing at each iteration the points
that are close to the line found. We consider two approaches to
solve the problem. The first is a simple approach that selects the
best line among a randomly chosen subset of lines each defined by
a pair of edge points. The second approach, based on tabu search,
explores a larger set of candidate lines thus obtaining a better
fit of the lines to the points. We present experimental results
on different types of three-dimensional data (i) range images of
polyhedral objects (ii) secondary structures (helices and strands)
of large molecules.
key words: 3D line detection, range images, tabu search

1. Introduction

The problem of detecting straight lines arises frequently
in image processing and computer vision. Many ap-
proaches have been proposed and implemented for the
case of 2D images. Successful approaches for inten-
sity images do not necessarily represent reasonable so-
lutions for range data. For instance methods based on
the Hough transform and its variants are effective for
2D line detection for their insensitivity to noise and
gaps in the lines [4]. However, since their memory and
computation requirements grow with the number of pa-
rameters necessary to define a geometric primitive they
do not seem adequate for the detection of lines in 3D
space.

Not much work has been done on the detection of
lines in range images; most of the research on the ex-
traction of primitives from range data has focused on
the segmentation of data into planar patches or into the
more complex second-order degree surfaces [11]. Given
an image segmented into planar regions, the line seg-
ments can be found by tracing and linking the bound-
ary points between adjacent faces in the labeled image.
However, the results of such an approach are generally
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not satisfactory and need to be refined due to the often
imperfect results of the segmentation itself. One of the
common errors of the range data segmenters is to pro-
duce over-segmentation, that is multiple detection of a
single surface. Furthermore, often the detected bound-
aries between adjacent surfaces are distorted and noisy.

One approach to line detection in range images
proposed in the literature [3] reduces the problem of
line detection in 3D to a 2D problem by first segmenting
the range data into planar patches and then finding the
boundaries of each planar face. This is accomplished by
mapping the edge points assigned to a face into a 2D
binary image and applying a 2D Hough transform to
find straight line segments that are the boundaries of
the planar face. This method finds the same line more
than once, since a line is at the boundary of more than
one planar face of an object; thus further processing is
needed to eliminate the duplicates.

In this paper we consider a direct 3D line detection
problem stated as follows. Given a set Γ of n points in
3D space and a non-negative constant ε, determine the
line that is at a distance at most ε from the maximal
number of points of Γ. The above problem is solved
repeatedly for the extraction of multiple lines after the
removal of the points that are found close to the best
line. For line detection in range images, the input set
Γ is chosen as the set of edge points.

In the following we first discuss a simple approach
to solve the 3D line detection problem that determines
the best line among all lines defined by pairs of input
points. We then present a more robust optimization
technique based on tabu search that explores a larger
set of candidate lines. Both strategies have high com-
putational requirements and may become impractical
for applications involving large datasets of points. To
reduce the complexity of the algorithms random sample
consensus (RANSAC) [2], [5] is used so that the search
can restricted to a random selected subset of pairs of
points.

The rest of the paper is organized as follows. In
Sect. 2 we describe a simple approach to line detection
in range images. We show that a proper selection of
edge points that only takes into account crease edges
may lead to better results and also speed up the com-
putation. In Sect. 3 we briefly review the tabu search
paradigm for solving optimization problems and show
how it can be applied to the problem of detecting lines
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in three-dimensional point sets. Section 4 describes a
post-processing phase that is needed to eliminate gaps
present in the lines or to remove possible duplicate lines.
Experimental results conducted on several data sets are
presented in Sect. 5. Finally, we conclude with future
work.

2. A Simple Approach

A simple approach to line detection selects the optimal
line among those that are defined by pairs of points in
the dataset. It does so by determining for each line
passing through a pair of edge points the number of
other points lying within the expected measurement
error ε from that line; the best line is the one that
corresponds to the maximum computed value. Since
for each of the n×(n−1)

2 lines defined by pairs of points
we need to examine each of the remaining n−2 points,
the overall time complexity of the algorithm is cubic in
the number of points. For any reasonable value of n
the O(n3) time requirement may be prohibitive. How-
ever, in practice a number of pairs much less than the
above is acceptable. A relatively small subset of pairs
of points randomly chosen can yield results that are
within a given bound from the optimal.

The determination of the number k of trials (pairs)
that are guaranteed to produce good results with high
probability has been considered for the extraction of
various parametric shapes and problems [5], [15]. The
value k is chosen as follows. Let w be the probability
that a single randomly selected data point is within ε
distance from the line. Let z be the probability that at
least one of the random selections is error-free. z is a
function of w and k:

z = 1 − (1 − w2)k

Thus, the value k is given by:

k =
log(1 − z)

log(1 − w2).

In our system, the edge points are found by the
scanline approximation algorithm [12], [13]. There are
several edge detection algorithms developed in the lit-
erature for range images. We have chosen the scanline
algorithm because of its simplicity and its high execu-
tion speed. Furthermore, this edge detector finds the
jump and crease edge points. This information may be
useful in reducing the amount of post-processing needed
to eliminate duplicate lines. Jump edges are generated
by occlusion planes. A line detection algorithm tends
to produce separate lines corresponding to jump edges
on both sides of the planes; the lines are adjacent on the
range grid, but are distant in 3D space and therefore
detected as different lines. By using the information
about the location of the jump edges, this problem is
overcome.

3. Tabu Search

Tabu search (TS) [6], [10] is a powerful optimization
technique that has been used to solve a variety of com-
plex combinatorial problems. TS is designed to explore
the solution space beyond local optimality. It uses an
operation called move that changes the current solu-
tion and allows to visit a neighborhood of the given
current solution. One of the main components of TS is
the use of adaptive memory: during the search, local
choices are guided by the past history of the search.
Restrictions to local moves are imposed by making ref-
erence to the memory structures, which store forbidden
or tabu moves. This prevents solutions from the recent
past from being revisited. Typically, instead of storing
the complete solutions that correspond to tabu moves,
these structures are recorded in the form of attributes
that characterize a tabu solution. Tabu classification is
not static. The number of iterations to forbid a tabu
move, called tabu tenure, may change according to the
context and vary depending on the status of the search.
TS is thus based on a dynamic neighborhood: the set
of neighboring solutions may be reduced to a subset of
the available moves that may be different at each stage
depending on the past history.

At each step of the optimization process, the pro-
cedure selects the best move in the local neighborhood
and at the same time keeps track of the best solu-
tion found so far. Since the best move may result in
worse value for the objective function of the current so-
lution, this approach differs significantly from a descent
method that only permits moves improving on the so-
lution and ends when no improvement can be found.

Other important components of tabu search are
intensification and diversification. Intensification en-
courages moves historically found good; diversification
encourages moves to solutions that differ significantly
from those seen in the past. Thus diversification allows
to consider moves not in the local neighborhood. Diver-
sification is invoked in the presence of a critical event ;
a critical event occurs for instance when the objective
function does not improve for a number of consecutive
iterations. In such cases the search can be restarted
with a significantly different solution.

The method continues to generate solutions and
over time the best known solution continues to improve
until a given termination criterion is satisfied.

We have applied the basic TS paradigm to the line
detection problem and obtained results of better qual-
ity than using the above simple approach. There are a
number of important design decisions that have to be
made when using the standard tabu search optimiza-
tion procedure. A crucial aspect of TS, which is com-
mon to many other search procedures, is in the choice
of an appropriate definition of the neighborhood of a
solution. Another key question is the types of tabu at-
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tributes to be selected for an effective use of adaptive
memory and the various thresholds used for tabu classi-
fication and tenure. Finally, it has to be decided how to
use randomization within the search procedure to gen-
erate candidate solutions and how to set the parameters
of the random sampling.

The line detection problem is easily formulated as
one objective function. The objective function is de-
fined as number of points within ε distance from a line,
with ε a given constant. The proposed method does not
restrict the lines to pass through pairs of input points
and therefore may find a better fit of lines to points than
the naive approach especially for long line segments.

In our problem, the choice of a neighborhood is rel-
atively straightforward. Neighbors of a given solution
are obtained by moving the points that define the cur-
rent line in a small 3D neighborhood. More precisely,
given a solution rij , that is a line through points PiPj , a
move operation increments or decrements by a constant
amount γ the value of a coordinate of either Pi or Pj or
both. TS involves exploring a dynamic neighborhood
of a solution and the selection of tabu attributes. Tabu
moves correspond to changes in coordinates recently
applied and are excluded to avoid revisiting the same
solutions. Starting from an initial random solution, the
procedure repeatedly selects the best local move as the
next solution to explore. Furthermore, it keeps track of
the best known solution over time and updates the list
of tabu moves. By allowing moves to non improving
solutions, the search can continue beyond local optima.

The initial solution is chosen as a line within ε dis-
tance from at least t of points. Such a line is found by
repeatedly selecting pairs of random points until one
satisfying the above criterion is obtained. To reduce
the effect of noise and improve the performance, only
pairs of points with Euclidean distance within a given
range (depending on the application) are examined for
generating candidate lines. The parameter t is updated
during the processing, it has a larger value at the begin-
ning so that higher weight lines are considered initially
and decreases towards the end of the processing.

At each step we examine the entire neighborhood
of available moves and always select the best move that
is not tabu (starting from the initial solution found by
the above heuristics). Tabu classification occurs after
the best move is found. A move “opposite” to the
current best move is labeled tabu. An opposite move
changes the coordinate of the point(s) affected by the
move by the opposite amount. A move is kept tabu for
a number iterations, tabu-tenure, that is the same for
all tabu moves and, in our implementation, does not
change during the process. Since the neighborhood is
relatively small, the information about tabu tenure can
be easily stored for all moves.

If for a few consecutive attempts at changing the
current solution no improvement was found, we depart
significantly from the current solution and randomly

generate a new starting solution. The step terminates
when this diversification procedure fails to produce a
better solution for a number of consecutive attempts.

A skecth of the algorithm to detect one single line
follows.

Set i to 0. m and z are positive constants.

1. set i to i + 1.
Select an initial solution as follows. Repeatedly
select a line through a pair of random edge points
Pi, Pj until one is found that is within ε distance
from at least t edge points. (t is decremented
during the processing).

2. repeat

{Select the best non tabu local move of the cur-
rent solution.
Update the current solution to the one obtained
above.
Label the corresponding opposite move tabu.
Check tenure for all other tabu moves.
Keep track of the best solution found so far.}

until (the objective function did not increase for
more than z iterations)

3. if (i < m) go to 1.
4. end

After a new line is detected, the longest segment
on the line with no large gaps on it is entered into the
list of detected segments. The points at a distance less
than δ from the segment are then removed from the
list of points; the list consisting of the remaining edge
points is used in the next iteration to detect the next
best line. The constant δ is generally chosen larger than
ε to account for errors in the measurements as well as in
the edge detection process. For multiple line detection,
the above procedure is repeated. The overall procedure
terminates when very few points are left in the list of
remaining points.

The TS for line detection has been successfully ap-
plied to reasonably small sets (hundreds of points) from
biological datasets, in particular for the determination
of linear segments associated to secondary structures
in proteins. For applications in vision involving range
data the number of boundary points is generally high
(few thousands points) and the extra work required to
optimize the model fitting is justified when the level of
noise and distortion is high and high accuracy is re-
quired.

4. Merging Segments

The procedures described above to find the segments
that best represent the data may produce an over-
segmentation, that is more segments than those actu-
ally present in the image. To overcome this problem,
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a post-processing phase is needed to eliminate spurious
segments or to merge contiguous segments.

Next we describe how to merge two ‘close’ seg-
ments. The following two criteria define close segments:

• the lines containing the two segments have approx-
imately the same slope.

• the distance between the two segments is below a
given threshold.

The distance between two segments is defined as
the minimum distance between the two lines containing
the segments, if this minimum distance is achieved by
points internal to the two segments; otherwise, it is
defined as the minimum of the distances between the
extreme points of the two segments.

Once two segments PiPj and PkPl are found close
according to the two previous criteria, they are replaced
by a single segment r′ defined in terms of its midpoint
Pm and orientation vector em as follows. Let

Pm =
wij(Pi + Pj)/2 + wkl(Pk + Pl)/2

wij + wkl

where wij(wkl) is the number of input points within ε
distance from Pi, Pj (Pk, Pl). In other words, the two
segments PiPj and PkPl are given a weight that is the
number of edge points associated to the segments. This
weighting factor penalizes short or sparse segments. Let
eij(ekl) be the unit vector of rij(rkl). The unit vector
em of r′ is given by:

em =
wijeij + wklekl

wij + wkl

To determine the endpoints of r′ we project Pi, Pj , Pk

and Pl on the line of r′ and choose the two projections
that are the farthest apart.

5. Experimental Results

The program LineDetection that implements the pro-
posed approaches to line detection in 3D is written in
C. It runs interactively and allows to choose either the
simple approach or the tabu search, and the use of the
post-processing phase for possible merging of some of
the detected segments.

We have tested the program on 40 range images
of polyhedral objects acquired by an ABW structures
light scanner†. These images have been used for an ex-
perimental evaluation of several methods for segment-
ing range images into planar or high-order surfaces [11].
The sets of edge points, inputs to our algorithms, have
been extracted from the images using the scanline ap-
proach developed in [13].

To segment the ABW test range images we have
used the following values for the parameters. ε was set
to 1.0. Recall that a point within ε distance from a line
is considered close to the line and increases the objec-
tive function. After a line is detected the points within

Fig. 1 The range image abw.train.9.

distance δ ≥ ε from it are removed from the list of avail-
able points; δ is chosen to 2.5 in ours tests. A line is
defined by two points randomly selected from the set of
remaining edge points. The distance between the two
points should not be below 15 and not exceed 45 for the
line to be considered a candidate line. Another param-
eter used for the selection of candidate lines specifies
the minimum number of points t that have to be close
to the line. The initial value of t has been set to 15.

The values of other parameters required by TS and
used with the ABW range images are listed in the fol-
lowing. Tha parameter γ used in a move operation to
change the coordinate value of a point through the line
is set to 1.0. The tabu tenure is equal to 8. A criti-
cal event occurs after the objective function does not
improve for 20 iterations. The search for multiple lines
terminates when fewer than 250 points are left in the
list of available edge points.

Figure 2 shows the outputs of the program on the
range image abw.train.9 of Fig. 1, using the simple ap-
proach and the tabu search. In both cases, the merging
procedure for the resulting segments has been applied.
From the figure, the improvements of the TS in terms
of fewer fragmented segments are clear. The execution
times on a SUN Sparcstation20 are 0.3 s and 0.6 s for
the simple and TS approaches, respectively.

Figure 3 shows the range image abw.train.3 and
the obtained segments superimposed to the input im-
age. It appears that the results are not very satisfactory
in this case: there are missing segments and segments
that do not correspond to actual boundary segments
in the scene. However, this seems to be due to a poor
edge detection, as can be seen from Fig. 4, which in
turn reflects the poor quality of the input range image.
The line segments extracted by the two methods have
been used for finding correspondences between sets of
segments. The matching approach presented in [8],
[9] computes the minimum Hausdorff distance between
sets of segments and derives the best rigid transforma-
tion that maps one set into the other. The segments
generated by tabu search have generally provided a bet-

†The images are available from http://marathon.csee.
usf.edu/range/seg-comp/SegComp.html
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(a) (b)

Fig. 2 The outputs of abw.train.9 with the simple algorithm (a) and TS (b).

(a) (b)

Fig. 3 The range image abw.train.3, (a) and the output of TS superimposed to the
input image (b).

Fig. 4 The set of edge points extracted from abw.train.3.

ter input for the matching procedure that was able to
find a better overlap for the sets of segments.

We have also conducted experiments on sets of bi-
ological data, more precisely on the 3D structures of
proteins. Our approach has been used to determine
linear segments that best approximate the secondary
structures, i.e. helices and strands, of proteins. The
input to the program is the set of atoms of a protein
with their 3D coordinates and the specification of sec-
ondary structures. The segments obtained from several
proteins have been used for proteins structure compar-
ison and fast retrieval of substructures from protein
databases based on line segment representation of pro-
teins [7]. As an example, Figs. 5(a) and 6(a) display
protein 1IFB and 1ALB, respectively, from the protein
data bank PDB [1]. Figures 5(b) and 6(b) show the
line segments associated to the secondary structures of

proteins 1IFB and 1ALB. Each segment is displayed as
a cylinder with the radius equal to 1.0. In this applica-
tion ε has been chosen equal to 1.7 Angstrom which is
a typical value for the width of a secondary structures.

6. Conclusions

We have presented two approaches to the line detection
problem in range images and shown results on range
images of polyhedral objects. Although the TS requires
higher execution times, the results obtained with this
strategy are generally better. We have used the line
segments extracted from range images as the inputs to a
matching algorithm that finds correspondences between
line segments in two 3D objects. When TS was chosen
to generate the line segments, generally a better match
was found.

As a final note, the segments extracted by this
method do not generally correspond to a valid bound-
ary representation of an object [14]. One necessary con-
dition satisfied by a valid boundary representation is
that the boundary segments either are disjoint or in-
tersect at a common vertex. This is often violated by
the output of the algorithm. To enforce these condi-
tions, further processing is necessary. Obtaining a valid
boundary is beyond the scope of this work.
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(a) (b)

Fig. 5 (a) The protein 1IFB from the PDB database and its secondary structures. (b)
The line segments associated to the secondary structures obtained with TS. Each segment
is displayed as a cylinder with the radius equal to 1.0A.

(a) (b)

Fig. 6 (a) The protein 1ALB from the PDB database and its secondary structures. (b)
The line segments associated to the secondary structures obtained with TS. Each segment
is displayed as a cylinder with the radius equal to 1.0A.
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