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ABSTRACT
We continue the study of topological persistence [5] by investigat-
ing the problem of simplifying a functionf in a way that removes
topological noise as determined by its persistence diagram [2]. To
state our results, we call a functiong anε-simplificationof another
functionf if ‖f − g‖∞ ≤ ε, and the persistence diagrams ofg are
the same as those off except all points withinL1-distance at most
ε from the diagonal have been removed. We prove that for func-
tions f on a 2-manifold suchε-simplification exists, and we give
an algorithm to construct them in the piecewise linear case.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations, Computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics—Counting problems

General Terms
Algorithms, Theory

1. INTRODUCTION
In this section, we briefly motivate the problem studied in this

paper, review prior related work, and formally state our results.

Motivation. Scientists generate large quantities of continuous data,
such as electron densities, temperature distributions. Topological
analysis can be used to make sense of such data, to detect interest-
ing features and to observe patterns that cannot be seen in the raw.
Regardless of how the data is obtained, whether it is observed in ex-
periments or computed in simulations, data is unfortunately always
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burdened with noise. While the source of the noise may range from
purely physical such as imprecise measurements to purely com-
putational such as the choice of a triangulation, the difficulties it
creates always remain. In this paper we consider the problem of
ridding the data of that noise by simplifying the function it defines.

It is important to note that whether something is noise or a fea-
ture is in the eyes of the beholder. We endorse the idea of Cohen-
Steiner, Edelsbrunner, and Harer [2] that the importance of a fea-
ture can be quantified by the amount of change necessary to elimi-
nate it. We therefore study the question of how one would eliminate
a feature in order to both understand what parts of the domain it oc-
cupies, and what the function looks like without it.

Results and prior work. We build on the work of Edelsbrunner,
Letscher, and Zomorodian who introduced the concept of topolog-
ical persistence [5]. Applying this concept to continuous functions,
we view the resulting sequence of persistence diagrams as a char-
acterization in which each point represents a topological feature.
The importance of a feature is quantified by the distance of this
point from the diagonal. Points closer to the diagonal are deemed
less important than others and may be interpreted as representing
noise. This interpretation is in part justified by the stability of the
representation [2]. To state our results, we first introduce the cen-
tral concept of this paper. LetX be a topological space,f : X → R
a continuous function,Dp(f) its dimensionp persistence diagram,
andε a positive constant.

DEFINITION. A dimensionp ε-simplificationof f is a function
g : X → R such that‖f − g‖∞ ≤ ε and all persistence diagrams
of g are the same as those off except forDp(g) which is the same
asDp(f) but with all off-diagonal points atL1-distances at mostε
from the diagonal removed.

See Figure 1 for an illustration. Once we know thatε-simplifications
exist for all dimensions, we can iterate the construction and erase
the points close to the diagonal in all persistence diagrams. We
refer to the resulting function as anε-simplificationof f . In this
paper, we consider the problem of findingε-simplifications of a
functionf , either restricted to a single dimension or iterated across
all dimensions. Our main result is a constructive proof that for 2-
manifolds such simplifications exist.

SIMPLIFICATION THEOREM FOR2-MANIFOLDS.

A. Given a 2-manifoldM, a functionf : M → R, a constant
ε > 0, and a dimensionp = 0, 1, there exists a dimensionp
ε-simplificationg : M → R.

B. For p = 0, 1 and allε > δ > 0 there exists a 2-manifold
M and a functionf : M → R such that ifg : M → R is a
dimensionp ε-simplification off then‖f − g‖∞ > ε− δ.
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Figure 1: Left: Two embeddings of a 2-manifoldM in R3. The
functions f, g : M → R are the height functions of the light
shaded and the combined light and dark shaded embeddings.
Right: The dimension 0 persistence diagrams off and g. The
two points below the threshold distanceε from the diagonal are
present in the persistence diagram off but not in that of its ε-
simplification g. The other two points appear in both diagrams.

The problem of simplifying continuous functions has been studied
before, in many different areas and from many different angles. The
work related most directly to ours is on the simplification of Morse-
Smale complexes initiated in [4]. Such complexes capture informa-
tion about the gradient vector field by partitioning the domain into
regions of uniform flow. While the simplification algorithms given
in [1, 4, 6] follow the persistence order, they only simplify the com-
plex and not the function itself. The use of the simplified complex
together with the original data may be tolerable for visualization
purposes, but it is not satisfactory when the simplified data is used
in the subsequent data analysis stage. It is worth noting that the
example used for the proof of part B of the Simplification Theo-
rem shows that the error bound ofε/2 for simplification of a single
pair of critical vertices claimed by Bremer et al. [1] is in general
unachievable.

In their original paper [5], Edelsbrunner et al. also consider the
question of topological simplification. However, there exist signifi-
cant differences between their work and the results presented in this
paper. The most obvious distinction comes from the problem state-
ment itself. Edelsbrunner et al. propose to move all the points of the
persistence diagram towards the diagonal regardless of their persis-
tence; in this paper, we require points of persistence higher thanε
to remain in place. In addition, we make explicit guarantees about
the distance between the simplified and the original functions.

Outline. Section 2 reviews background material necessary for this
paper. Section 3 gives an overview of our approach to constructing
ε-simplifications. Section 4 presents the details of our main result,
a procedure for simplifying a function in accordance with its per-
sistence diagram. Section 5 exhibits functions for which the error
bounds that we achieve are optimal. Section 6 concludes the paper.

2. BACKGROUND
We briefly review simplicial complexes and homology groups.

We refer the reader to Hatcher [7] or Munkres [9] for a thorough
study of these subjects. We also review the concept of topological
persistence [2, 5, 11], restricting ourselves to modulo 2 arithmetic.

Complexes and homology.A p-simplexis the convex hull ofp+1
affinely independent points. The convex hull of any subset of those
points is again a simplex, and is called afaceof thep-simplex. If

τ is a face ofσ, thenσ is a cofaceof τ . A simplicial complex
is the collection of faces of a finite number of simplices, any two
of which are either disjoint or meet in a common face. IfK is a
simplicial complex inRd, then itsunderlying spaceis the union
of its simplices together with the subspace topology inherited from
Rd. For a set of verticesU in K, we define itsstar as the set of
simplices that have at least one vertex inU , and itslink as the set
of faces of simplices in the star that do not also belong to the star:

StU = {σ ∈ K | ∃u ∈ U, u ∈ σ},
Lk U = {τ ∈ K | τ ⊆ σ ∈ StU, τ 6∈ StU}.

We consider a topological spaceX and a triangulationK of X,
i.e., a simplicial complex whose underlying space is homeomor-
phic to X. In simplicial homology, ap-chain is a formal sum of
p-simplices inK. We use modulo 2 arithmetic implying the coef-
ficients in the formal sum are 0 or 1. We can therefore think of the
p-chains as subsets of allp-simplices, namely the ones with coeffi-
cient 1. Adding chains modulo 2, we obtain thegroup ofp-chains,
denotedCp(K). It is easy to see thatCp(K) is abelian. Thebound-
ary of ap-simplex is the set of its(p−1)-dimensional faces, and the
boundary of ap-chain is the sum of the boundaries of its simplices.
Denoting the boundary map by∂p, we observe that it is a homo-
morphism fromCp(K) to Cp−1(K). Noting that∂p∂p+1 = 0, we
take the sequence of groups together with the homomorphisms to
obtain achain complex,

. . .
∂p+2→ Cp+1

∂p+1→ Cp
∂p→ Cp−1

∂p−1→ . . .

The group of p-cyclesis the kernel of thep-th boundary homo-
morphism,Zp(K) = ker (∂p), and thegroup ofp-boundariesis
the image of the(p + 1)-st boundary homomorphism,Bp(K) =
im (∂p+1). Since∂p∂p+1 = 0, Bp(K) is a subgroup ofZp(K).
Thep-th homology groupof K is the quotient of the two,Hp(K) =
Zp(K)/Bp(K). Thep-th Betti numberof K is the rank of itsp-th
homology group,βp(K) = rank Hp(K). Homology groups and
therefore Betti numbers are invariants of the topological spaceX,
and do not depend on the choice of the triangulationK [7, 9].

A topological space iscontractibleif it is homotopy equivalent
to a point. In this case, all Betti numbers vanish, except forβ0

which is 1.

Piecewise-linear framework. In this paper we consider real-val-
ued, continuous functionsf : M → R defined on a 2-manifold.
More specifically, we restrict our attention to functions defined on
the vertices of a triangulationK of M and interpolated linearly
on all edges and triangles. Such functions are common in prac-
tice (when the underlying space is sampled at discrete points), and
are of interest in scientific visualization. We assume thatf is non-
degenerate, i.e., the function values are different at all vertices. Us-
ing these function values, we refine the notions of star and link.
Specifically, thelower starof a vertexu is the set of simplices in
the star for whichu has the maximum value of any vertex. The
lower link of u is the set of faces of simplices in the lower star that
do not also belong to the lower star:

St−u = {σ ∈ Stu | v ∈ σ ⇒ f(v) ≤ f(u)},
Lk−u = {τ ∈ Lk u | v ∈ τ ⇒ f(v) < f(u)}.

Upper starsand upper linksare defined symmetrically. Similar
to the star, we extend the concept of lower star to a set of ver-
tices,U , by taking the union of the individual lower stars: St−U =S

u∈U St−u. Observe that iff is non-degenerate, the lower and up-
per stars and links of a vertex do not depend on the function values
but only on their ordering by function value.



We characterize all vertices by the Betti numbers of their lower
links. SinceK is a triangulation of a 2-manifold, the link of a
vertex is a topological circle (a 1-sphere) and onlyβ0 andβ1 of the
lower link can be non-zero. We call a vertexu a

regular point
minimum

saddle
maximum
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β0 = 1 andβ1 = 0,
β0 = 0 andβ1 = 0,
β0 > 1 andβ1 = 0,
β0 = 1 andβ1 = 1.

A saddle issimpleif β0 of its lower link is 2, otherwise, it is amulti-
saddle. In the discussion below we assume that all the saddles inK
are simple, since we can unfold all the multi-saddles following the
procedure described in [4]. This assumption is not necessary but
simplifies the exposition of the algorithm described in this paper. A
vertex is acritical point unless it is a regular point, and we assign
to it an indexwhich is 0 for a minimum, 1 for a simple saddle, and
2 for a maximum.

Persistence. Let σ1, σ2, . . . , σN be a sequence of the simplices
in K. Writing Ki = {σj | j ≤ i}, we call the sequence∅ =
K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ KN = K a filtration of K if all Ki

are complexes or, equivalently, the faces of every simplex precede
the simplex in the given sequence. For a sequencev1, v2, . . . , vn

of the vertices inK, we can construct a sequence of the simplices
by listing all lower stars in order and sorting the simplices within
each lower star in the order of non-decreasing dimension. If the
vertices are sorted in order of increasing function value, we call
the resulting sequence of complexes thelower-star filtrationof the
function. From here on, all filtrations will be lower-star filtrations
of functions defined at the vertices.

For 1 ≤ i < j ≤ N , consider the homomorphismsα, β, andγ
implied by the inclusionsKi−1 ⊂ Ki ⊂ Kj−1 ⊂ Kj :

Hp(Ki−1)
α→ Hp(Ki)

β−→ Hp(Kj−1)
γ→ Hp(Kj).

We say that a homology classλ ∈ Hp(Ki) is born in Ki if 0 6=
λ /∈ im (α). If λ is born inKi, we say that itdiesenteringKj if
β(λ) /∈ im (βα) andγβ(λ) ∈ im (γβα). Observe that sinceKi

andKi+1 differ by only one simplex, at most one homology class
is born or dies at any step in the filtration. If there is aλ ∈ Hp(Ki)
that is born inKi, we callσi positive. Similarly, if a homology
class dies enteringKj , we callσj negative. If there exists a ho-
mology classλ that is born inKi and dies enteringKj , we pair
simplicesσi andσj and call(σi, σj) a persistence pair. It is easy
to see that ifσi is p-dimensional thenσj is (p + 1)-dimensional.
Edelsbrunner, Letscher, and Zomorodian [5] give an algorithm for
computing this persistence pairing in worst-case time cubic in the
number of simplices in the given sequence.

There is a close relation between the pairing of simplices and the
indices of critical points. To describe this, we consider a simplexσ
in the lower star of a vertexs and a simplexτ in the lower star of a
vertext. Assuming(σ, τ) is a persistence pair we sayσ andτ are
locally paired if s = t and they arenon-locally pairedif s 6= t. It
is not difficult to prove the following observation.

DIMENSION-INDEX LEMMA . A vertexv is regular iff all sim-
plices in its lower star are locally paired. Otherwise, it is critical
with index equal to the dimension of the non-locally paired sim-
plex in its lower star.

For every persistence pair of simplices,(σ, τ), we have the corre-
sponding persistence pair of critical points,(s, t). We call the latter
improperif s = t andproperif s 6= t. We record information about
all proper pairs by drawing the points(f(s), f(t)) in the plane. In
addition, for each unpaired simplex we draw the point(f(s),∞),

and following [2] we draw all diagonal points, each infinitely of-
ten. By separating the points in whichs has index 0 from those in
which it has index 1 we get two multisets of points in the extended
plane,R̄2, which we refer to as thedimension0 and thedimension
1 persistence diagrams, D0(f) andD1(f).

Stability and transpositions. Cohen-Steiner, Edelsbrunner, and
Harer [2] proved a stability result for persistence diagrams. The fol-
lowing is its restriction to 2-manifolds. Given two functionsf, g :
M → R, as above, we define the distance between them to be the
L∞-norm of their difference:‖f − g‖∞ = supx∈M |f(x)−g(x)|.
Thebottleneck distancebetween the persistence diagrams off and
g is the infimum over all bijectionsγ : Dp(f) → Dp(g) of the
supremum distance between corresponding points:

dB(Dp(f), Dp(g)) = inf
γ

sup
u∈Dp(f)

‖u− γ(u)‖∞.

For technical reasons the functions are required to betame, by
which we mean they have only finitely many critical values and
any sublevel set has only finite Betti numbers.

STABILITY THEOREM. If f, g : M → R are two continuous,
tame functions then for anyp ≥ 0, the bottleneck distance between
their dimensionp persistence diagrams is not greater than the dis-
tance between the functions:dB(Dp(f), Dp(g)) ≤ ‖f − g‖∞.

Suppose that we continuously change the function values at the
vertices. As a result the points in the persistence diagram move,
but not more then the amount of change of the values. Even though
the motion is therefore continuous, the pairs defining the points in
the diagram canswitchvertices, but only at moments in time when
these vertices have the same value.

SWITCH LEMMA . Transposing two consecutive verticesvi and
vi+1 in the ordering defining the lower star-filtration can only affect
the persistence pairs containingvi andvi+1.

Cohen-Steiner, Edelsbrunner, and Morozov [3] give an algorithm
to maintain the pairing if two adjacent simplices are transposed and
the new sequence of complexes remains a filtration. In the follow-
ing sections, we will be transposing adjacent verticesvi, vi+1 in
the vertex ordering. The corresponding change in the lower-star
filtration is obtained by transposing the lower stars ofvi andvi+1,
which reduces to a number of simplex transpositions. We get a first
constraint on switches between persistence pairs by observing that
the indices in each pair are contiguous and increasing.

SAME INDEX LEMMA . Transpositions between critical vertices
with different indices preserve the persistence pairing.

A crucial second constraint on how switches between pairs can hap-
pen follows from the analysis in [3]. To describe it, we call two
pairs of critical points,(vi, vj) and(vk, vl), nestedif i < k < l <
j anddisjoint if i < j < k < l. To use these notions for unpaired
vertices, we consider them artificially paired with a dummy vertex
with subscript equal to infinity and we permit equality when we
compare subscripts that are infinite.

NESTED-DISJOINT LEMMA . During a transposition of two con-
secutive vertices, the pairs can switch these vertices iff the pairs are
nested or disjoint both before and after the transposition.

This lemma in particular implies that if before the transposition
there existk andl with k < i < i+1 < l such thatvk is paired with
vi+1 andvi is paired withvl, then aftervi andvi+1 are transposed
we still have the same two pairs.



3. OVERVIEW
In this section, we give a high-level view of our approach to find-

ing anε-simplification and present the necessary structural lemmas.
We leave the details of the algorithm to the next section.

Basic strategy.Simplifications of a function are generated by can-
celling critical points in pairs, minima with saddles and saddles
with maxima. In order to cancel a pair, one’s initial inclination may
be to change the values of both critical points, i.e., lower the saddle
and raise the minimum for a minimum-saddle pair, and raise the
saddle and lower the maximum for a saddle-maximum pair. How-
ever, as the example in Section 5 shows, this may not always be
possible because extrema can get stuck as they encounter other crit-
ical vertices. To avoid this difficulty, we leave the values of extrema
unchanged, and move only the saddles. Below we describe the case
of lowering a saddle to its matching minimum; the case of raising
the saddle to its matching maximum is symmetric.

Let V be the ordering of the vertices by increasing function
value, and let(s, t) be a minimum-saddle persistence pair of the
lower-star filtration determined byV . To cancel(s, t), we lower
a contiguous subsequence of vertices,T , which we imagine as a
flat region the saddle drags along while being lowered. Initially,
T = {t}. SinceT is contiguous inV , it partitionsV into three
contiguous subsequences,W, T, U , as illustrated in Figure 2. Let
w be the last vertex inW . LoweringT means either movingw past

tw T UW

St−W St−w St−T St−t St−U

Figure 2: Top: The sequence of vertices is partitioned intoW
with the last vertex w, T with the last vertex t, and U . Bottom:
The sequence of simplices defining the corresponding lower-
star filtration.

T (by assigning all vertices inT a value slightly less thanf(w)),
or expandingT to includew (by setting the values of all vertices of
T equal tof(w)). The former approach is preferable, and we use
it whenw is not in the link ofT . A difficulty arises whenw is in
the link of T since movingT beloww may change the type from
regular to critical or vice versa or turnw into a multi-saddle if it
is already a saddle. In this case, we expandT which preserves the
type of the vertex. However, ifw is a critical point with persistence
higher than(s, t) then we cannot afford to move the correspond-
ing point in the persistence diagram. We thus need to maintain a
critical point with the same value and cannot immediately include
w into T . This requirement dictates two properties we maintain as
invariants, namely thatt be the only critical vertex inT and that the
star ofT be contractible.

Encountering a minimum. If w is a minimum and belongs to the
link of T then the following lemma tells us thatw is paired witht,
i.e.,w is equal tos.

PAIRED M INIMUM LEMMA . If w is a minimum that immedi-
ately precedesT in V , the star ofT is contractible, and the only
critical vertex inT is a negative saddlet, thenw = s iff w belongs
to the link ofT .

PROOF. If w = s then the definition of persistence pairs implies
a path starting atw whose edges belong to the lower star ofT . In

particular the first edge connectsw to a vertex inT implying that
w is in the lower link ofT , as required.

To prove the reverse direction, assumew belongs to the link
of T . Starting with St−W we proceed along the lower-star fil-
tration by adding the simplices in St−T until we arrive at the lower
star of W ∪ T . In St−W , w forms its own component, and in
St−(W ∪ T ), w belongs to a component that contains all of St−T .
The latter component cannot just grow fromw, by adding lower
stars of regular vertices to it, because there is one negative saddle,
t, and adding its lower star merges two components. One of these
components containsw and the other was started by another, older
vertex inW . Hence(w, t) is a persistence pair andw = s, as
required.

Once we reachs, we add it toT and reorder the vertices inT so
that all of them become regular, includings andt.

Encountering a saddle. If w is in the link of T , it cannot be a
maximum, therefore the only remaining case is a saddle. To cope
with this case, we subdivide some of the edges in the lower star
of w in a way so thatw is no longer a saddle, and the new saddle
that replaces it is no longer in the link ofT . To perform such a
subdivision, we need vertices in the link ofw that are inU . If there
are no such vertices, we build a tunnel toU between the lower star
of T and the lower star ofW . To guarantee that this is possible,
we use again the invariant that guarantees that the lower star ofT
is contractible. This ensures that the link ofT is connected and we
can travel to a vertex inU by following this link.

The following structural lemma will play a crucial role in the
analysis presented in the next section. It assumes a partition ofV
into W, T, U and writesw for the last vertex ofW , as usual. In a
nutshell, the lemma says that unlike suggested by Figure 3, it is not
possible to draw a path throughw that enters the lower star ofU as
we move fromw in both directions and which locally separates the
vertices ofT in the link ofw.

NON-SEPARATIONLEMMA . Suppose St−T ∩ Lk w 6= ∅, the
star ofT is contractible, and the only critical vertex inT is a nega-
tive saddle. Then Lk−w merges all pieces of St−T ∩ Lk w into a
single component.

PROOF. Label the vertices in the link ofw that belong toT in
a counter-clockwise order aroundw as t1, t2, . . . , tm. To get a
contradiction, we suppose there are two vertices,ti andtj , that are
not in the same component of(St−T ∩ Lk w) ∪ Lk−w. In other
words,ti andtj are locally separated by a path that passes through
w, connecting it on both sides to vertices inU , as in Figure 3.

Since the star ofT is contractible, there exists a path that con-
nectsti and tj entirely within the lower star ofT . Adding tiw
andwtj to the path forms a cycle. Sincew is incident to triangles
in the lower star ofU on both sides, this cycle does not bound a
2-chain inside the lower star ofW ∪ T . Indeed, suppose that it
does. Then that 2-chain must contain eitherwtiti+1, or wtiti−1

since they are the only two triangles in the lower star ofW ∪ T
that containwti. Assuming it containswtiti+1 and noting that the
cycle does not containwti+1, the 2-chain also containswti+1ti+2.
Continuing this way, the 2-chain must contain a trianglewti+ku,
with u ∈ U , which is impossible sincewti+ku is not in the lower
star ofW ∪ T .

Therefore, the cycle does not bound a 2-chain in the lower star
of W ∪ T . But this implies that adding the lower star ofT to
the lower star ofW creates a non-zero class in the first homology
group. It follows that there is a positive saddle inT , contradict-
ing the supposition that the only critical vertex inT is a negative
saddle.
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Figure 3: The addition of the lower star ofT to the lower star of
W creates a non-bounding cycle, which implies thatT contains
a positive saddle. The partially indicated path passing through
w locally separatesti and tj .

Order of cancellations. The only remaining question is the or-
der in which we consider the pairs of critical points. Most natural
would be the order of increasing persistence. Unfortunately, with
our technique such an order cannot guarantee thatf is changed by
at mostε. If two pairs overlap, canceling the one with higher per-
sistence may drag a vertex that has already been lowered during the
cancellation of a pair with lower persistence. Therefore, the change
in the function values may compound. Instead, we consider criti-
cal point pairs(s, t) in the order of increasing values oft, i.e., we
sweep the vertices from bottom to top and lower the saddles that
belong to a pair of persistence less thanε. If a vertex was low-
ered during the cancellation of one pair and then again during the
cancellation of another pair, then our technique guarantees that the
first pair was nested in the second. Therefore, the total change in
the function value of this vertex does not exceedε. This implies
‖f − g‖∞ ≤ ε, as required.

Naturally, if we cancel minimum-saddle and saddle-maximum
pairs, we sweep the vertices twice, from bottom to top and from
top to bottom. The change in function values is still bounded by
ε since the former pass lowers vertices by at mostε and the latter
pass raises them by at mostε.

4. SIMPLIFICATION DETAILS
As described in the previous section, we cancel pairs in the order

of increasing values of the second vertex. To cancel a pair(s, t),
we lower a collection of vertices, initializing it toT = {t}.

Case analysis.The algorithm proceeds by lowering or expanding
T one vertex at a time. To guarantee progress at each step, we
maintain three properties as invariants throughout the algorithm.

INVARIANT .

I. T contains only one critical vertex, namelyt;

II. the star ofT is contractible;

III. T is a contiguous sequence inV .

Since we only consider cancellations of minimum-saddle pairs, the
one critical pointt in T can be assumed to be a negative saddle.
Invariants I, II, III are trivially true whenT = {t}. As in the
previous section, sinceT is consecutive inV , it partitionsV into
three contiguous subsequences,W, T, U . Let w be the last vertex
of W . We distinguish two cases, each with two subcases.

Case I.The vertexw does not belong to the link ofT . Note that in
this case exchangingw andT in V changes neither the lower star
of w nor that ofT .

Case I.1. w is regular. After exchangingw andT in V , w remains
regular. The Stability Theorem thus implies that there are no
changes in the pairing of the critical points.

Case I.2. w is critical. The Paired Minimum Lemma impliesw 6=
s. If w is a minimum or a maximum then the Same Index
Lemma implies that exchangingw andT does not affect the
pairing. If w is a positive saddle then it is either unpaired
or paired with a maximum. In the first case, we consider it
paired with a dummy vertex that succeeds all other vertices.
In either case, the two pairs that containw and t are nei-
ther nested nor disjoint. Ifw is a negative saddle, the fact it
has not yet been cancelled implies its persistence exceedsε.
Sincew precedest, the pairs that containw andt are neither
nested nor disjoint. The Nested-Disjoint Lemma thus contra-
dicts any switch in the pairing. In conclusion, exchangingw
andT in V does not affect the pairing, as desired.

Case II. The vertexw belongs to the link ofT .

Case II.1. w is regular. If St−T ∩ Lk w is contractible, we add
w to T by prepending it on the left. Thent is still the only
critical vertex inT , the star ofT is still contractible because
St (T − {w}) is a deformation retract of StT , andT is still
contiguous inV . In summary, Invariants I, II, III are pre-
served.

The situation is more complicated if St−T ∩ Lk w is not
contractible. By the Non-separation Lemma, the union of
St−T ∩ Lk w and Lk−w is contractible, and by the regular-
ity of w, St−T ∩ Lk w consists of two components, as illus-
trated in Figure 4. Picking one of these components, we sub-
divide each edge connecting it tow with two new vertices.
The value of the vertex closer tow is chosen aboveT but
belowU , and the value of the vertex further fromw is cho-
sen belowT but abovew. Within this range, we choose the
values such that we get two monotonically increasing paths
from Lk−w toU , one passing through the new vertices above
T and the other passing through the new vertices belowT , as
shown in Figure 4. Observe that all new vertices are regular.
Indeed, each new vertex aboveT has a single vertex upper
link and each new vertex belowT has a single vertex lower
link. The type of every other vertex remains unchanged as
increasing edges in its star are replaced by increasing edges
and decreasing edges are replaced by decreasing edges. After
subdivision, we add the new vertices belowT to T , observ-
ing that Invariants I, II, III are preserved. But now we are
back in the case in which St−T ∩ Lk w is contractible, so
we can addw to T , as discussed earlier.

Case II.2. w is critical. It cannot be a maximum else its upper link
would be empty and it could not be in the link ofT .

Consider first the case in whichw is a saddle. By assump-
tion, all saddles are simple which implies that the lower link
of w consists of two components and so does the upper link.
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Figure 4: The vertex w is regular. Before the subdivision,
St−T ∩ Lk w is not contractible while (St−T ∩ Lk w)∪Lk−w
is. By subdividing, we reduce the problem to the case in which
St−T ∩ Lk w is contractible. The new edges are dashed and
the lower stars after subdivision are indicated by the shading.
The arrows indicate the direction in which the values of the new
vertices increase.

The vertices in the upper link belong toT and toU , and here
we consider the easy case in which there are vertices ofU in
both components of the upper link. We will show how to re-
duce the other case to this one shortly. By the Non-separation
Lemma, the portions of the upper link that contain vertices
of T sandwich one component of the lower link ofw, and the
portions that contain vertices ofU sandwich the other com-
ponent, as illustrated in Figure 5. We subdivide by placing a
single vertex on each edge connectingw with the latter com-
ponent of the lower link. The values of the new vertices are
chosen aboveT and belowU . Within this range we choose
the values such that the path of new vertices first decreases,
attains its minimum at a vertexx, and then increases, as in
Figure 5. All new vertices are regular, except forx, which
is a saddle. With these changes,w is regular and all other
vertices retain their original type.

We argue thatx replacesw in the pairing using a continuity
argument. To start, we assign to each new vertex the value
of the point where it is placed. At this time, all new ver-
tices are regular and do not belong to any proper persistence
pair. Next, we continuously change the values of the new
vertices, updating the sequence through transpositions as we
go. This is done so that all new vertices remain regular at
all times, except forx which makes a crucial transposition
with w in whichx becomes a saddle andw a regular vertex.
The Switch Lemma implies thatx replacesw in its pair, as
desired.

We finally continue the simplification process by movingx
and the other vertices pastT . Because of the subdivision, we
are now in Case I implying that these transpositions do not
affect the pairing. The vertexw is now regular, so we can
add it toT as described in Case II.1.

Consider second the case in whichw is a minimum. By the
Paired Minimum Lemma, we havew = s. We adds to T
and reorderT to make all its vertices regular, as described
below. The reordering finally cancels the pair(s, t).

To measure progress, we count the vertices inW . Each step shrinks
W , therefore the algorithm halts after a finite number of steps.

x

St−WSt−W

St−T

St−T
St−U

St−U

w

Figure 5: The vertex w is a saddle. The lower star ofU sand-
wiches a component of the lower star ofw. By subdividing its
edges, we turnw into a regular vertex, replacing it by the new
saddlex. The shading shows the lower stars after the subdivi-
sion. The arrows indicate the direction in which the values of
the new vertices increase.

Tunneling. In Case II.2 whenw is a saddle, we assumed that there
are vertices ofU in both components of the upper link ofw. Now
we describe additional actions that put such vertices in the upper
link in case they are missing. A crucial property in this construction
is Invariant II which implies that the link ofT is connected. This
link contains vertices both inW (for example,w) and inU (since
the link of t ∈ T contains vertices inU ). This implies that we can
walk on this link fromw until we encounter a first vertexu in U .
Let π be this path, as illustrated in Figure 6. By construction, all
vertices inπ other thanu belong toW . To get a vertex ofU into the
upper link ofw, we subdivide edges that connect interior vertices
of π with U . More precisely, we construct a connected strip of
triangles incident onπ, starting with the triangle that connects the
first edge ofπ with a vertex inT and ending with the triangle that
connects the last edge ofπ with a vertex inT . We subdivide the
interior edges in the strip, placing two new vertices on each. The
value of the new vertex closer toπ is chosen aboveT but belowU
and the value of the new vertex further fromπ is chosen belowT
but abovew. Within these two ranges, we choose the values to get
two monotonically increasing paths fromw to u. Similar to Case
II.1, all new vertices are regular and the types of the other vertices
remain unchanged.

The new vertices in the path belowT are now added toT . Note
that this preserves Invariants I, II, III. The other new vertices belong
to U so we succeeded in our goal of putting a vertex ofU into
the upper link ofw. If necessary, we repeat this procedure for the
second component of the upper link ofw. Finally, we proceed as
in Case II.2.

Reordering. We now discuss the last step of the algorithm in more
detail, the reordering of the vertices inT . Recall thatT is contigu-
ous inV , it starts ats and ends att, and all vertices inT are regular
except fors andt. By removingt we decompose the lower star of
T into components, and we letS ⊆ T be the set of vertices in the
same component ass. To reorderT , we

Step 1. removeS from V ;

Step 2. reverseS;

Step 3. add the reversed sequenceS right aftert to V .
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Figure 6: Connecting w to U in case the upper link of w has
only vertices in T . The subdivision creates two monotonically
increasing paths of new vertices parallel to the pathπ in the link
of T . The shading shows the lower stars after the subdivision.

The situations before and after the reordering are illustrated in Fig-
ure 7. The procedure is straightforward but it takes a bit of effort to
show that it is correct. In particular, we prove that after reordering
T all vertices inT are regular. This is clear for all vertices different
from t that do not belong toS. We distinguish four cases.

Case i. The last vertex,t ∈ T . Before reordering,t is a saddle
whose lower link consists of two components, one in the
lower star ofS. Step 3 effectively raises the vertices inS
abovet, making one of the components disappear and turn-
ing t into a regular vertex.

Case ii. The first vertex,s ∈ T . Sinces is a minimum, its lower
link is empty. Hence all neighbors ofs belong either toT
or toU , and the Non-separation Lemma implies that the por-
tion of the upper link ofs inside St−T is connected. This
is the same as Lk+s ∩ St−S, and because the star ofT is
contractible, at least some of the neighbors ofs belong to
U . This implies that the portion of the upper link defined by
vertices inS is contractible. Step 2 turns this portion into the
lower link ands into a regular vertex.

Case iii. A vertexu ∈ S whose link is contained in the lower star
of S. The upper link ofu becomes its lower link and vice
versa, implying thatu remains regular.

Case iv. A vertexv ∈ S, different froms, whose lower link is not
contained in the lower star ofS. We first observe thatv has
no neighbors inW . To see this, we consider the lower-star
filtration defined byV (before the reordering). Starting with
the lower star ofW ∪ {s} we add lower stars of vertices
in T until we arrive at the lower star ofW ∪ T . For our
argument only the vertices in the same component ass are
relevant so we consider St−(W ∪ S). But if v has neighbors
in W then this process would have merged the component
of s with another component, contradicting the fact that all
vertices inS−{s} are regular. This shows that all neighbors
not in T belong to the upper link ofv. The neighbors in
T all belong toS and at least some of them are lower than
v. These vertices form a contractible lower link ofv, else
v would not be regular. Similarly, the neighbors inS above
v form a contractible portion of the upper link ofv, else we
would have gotten a contradiction to Invariant II at the time
v was added toT . It thus follows that reversingS preserves
v as a regular vertex.
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Figure 7: Reordering the vertices inT . Before the reordering,
all vertices inT are regular except fors and t. After reordering,
all vertices in T are regular. Plus and minus signs distinguish
between upper and lower links. The cases in which the reorder-
ing swaps upper and lower links are marked by two signs.

Multi-saddles. We note that it is not necessary to unfold all multi-
saddles for the algorithm to work. Generally, we distinguish sad-
dles with persistence larger thanε, which do not have to be un-
folded, and saddles with persistence at mostε, which have to be
unfolded. However, this is oversimplifying the situation because a
multi-saddle can be part of multiple pairs with persistence larger as
well as smaller or equal toε. The Nested-Disjoint Lemma implies
that a multi-saddle can be unfolded such that the resulting positive
simple saddles have higher function value than the resulting nega-
tive simple saddles. Similarly, pairs with smaller persistence can be
nested within pairs of larger persistence. Finally, the resulting sim-
ple saddles with persistence larger thanε are assigned the function
value of the multi-saddle so that the unfolding does not interfere
with bounding the change of the function through simplification.

5. LOWER BOUND
In this section, we prove part B of the Simplification Theorem

for 2-Manifolds stated in Section 1: forp = 0, 1 and allε > δ > 0
there exists a 2-manifoldM and a functionf : M → R such
that if g : M → R is a dimensionp ε-simplification of f then
‖f − g‖∞ > ε − δ. The topology of the 2-manifold is less im-
portant for the proof than the details of the function. We thus let
M be the 2-sphere and we choosef as the (vertical) height func-
tion of the embedding ofM displayed in Figure 8. There are three
critical points with similar heights,f(P ) = r − ε, f(Q) = r − δ,
f(R) = r, where0 < δ < ε. The two minima have function
valuesf(A) = a < f(B) = b that are both much smaller than
r, and the maximum has a function valuef(Z) = z that is much
larger thanr. The critical points are paired as(B, Q), (P, R), leav-
ing A andZ unpaired. The off-diagonal points in the persistence
diagrams are therefore

D0(f) : (a,∞), (b, r − δ);

D1(f) : (r − ε, r);

D2(f) : (z,∞).

All points haveL1-distance larger thanε from the diagonal, except
for (r − ε, r) whoseL1-distance from the diagonal isε. To get a
dimension 1ε-simplification, we thus need to cancelP with R and
leave the other critical points in tact (or replace them by new critical
points at the same height). It seems plausible thatf does not have
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Figure 8: Embedding of the 2-sphereM in R3 such that f :
M → R is its height function. There are two minima, A and
B, two saddles,P and Q, and two maxima,R and Z. The two
ascending paths fromA to P decomposeM into a left and a
right hemisphere.

a dimension 1(ε− δ′)-simplification withδ < δ′ < ε. Indeed, we
cannot lowerR by more thanδ since it gets stuck atQ. Hence we
need to raiseP by at leastε− δ. A more formal argument support-
ing this conclusion will be presented shortly. Since this works for
arbitrarily smallδ > 0, this implies the claimed lower bound. To
prove the same bound forp = 0 we use the construction upside-
down, that is, we substitute−f for f .

We now give the more formal argument for the claim that the
difference betweenf and g is ‖f − g‖∞ > ε − δ. To get a
contradiction, we assume there is a dimension 1ε-simplification
g : M → R of f with ‖f − g‖∞ = ε − δ′ for someδ′ > δ. Let
α be the cycle consisting of two monotonically increasing paths
from A to P , as drawn in Figure 8. It decomposes the 2-sphere into
a closed left hemisphere (containingZ) and a closed right hemi-
sphere (containingB, Q, R). Consider the restrictions̄f and ḡ
of f and g to the right hemisphere. The diagramD0(f̄) is the
same asD0(f). By the Stability Theorem, the diagramD0(ḡ) con-
tains a point(b′, q′) at L∞-distance at mostε from (b, r − δ) in
D0(f̄). The valueq′ is that of a saddleQ′ of ḡ. By definition of
ε-simplification, we haveg(Q′) = q′ = r − δ, which is larger
thang(x) ≤ f(x) + (ε − δ′) < r − δ for any pointx on α. This
implies thatQ′ lies in the interior of the right hemisphere and is
therefore also a saddle ofg. Furthermore, there are no other fi-
nite off-diagonal points in the persistence diagrams ofg. It follows
thatg has only one saddle, namelyQ′. A similar argument implies
thatg has only one maximum,Z′, in the left hemisphere and that
g(Z′) = z. Since there is only one maximum and only one saddle,
we can draw a path fromZ′ to Q′ that monotonically decreases
in g. This path crosses the cycleα. But the pointsx on α have
g(x) < r − δ which is less than the values ofZ′ andQ′ at the two
ends. This contradicts the monotonicity of the path and implies
‖f − g‖∞ > ε− δ, as required.

6. DISCUSSION
The main contribution of this paper is a constructive proof of

the existence ofε-simplifications for continuous functions on 2-
manifolds. The proof extends to 2-manifolds with boundary since
we can convert those into 2-manifolds without boundary by glu-
ing a disk to each boundary cycle. A curious aspect of our proof
is that dimension 0 and dimension 1 homology can be simplified
independently. Indeed, we can cancel all minimum-saddle pairs
of persistence at mostε while leaving all saddle-maximum pairs
intact, or vice versa. It is also worthwhile to mention that the algo-
rithm is combinatorial and we are free to assign function values that
are consistent with the computed ordering of the vertices. How-
ever, our algorithm is not incremental in the sense of continuously
increasing the error threshold and this way generating a hierarchy
of simplifications. The main reason for this shortcoming is that
the sequence of pairs cancelled by our algorithm is generally not
sorted by persistence. We leave the design of such an incremental
simplification algorithm as an open question.

The authors consider the simplification of continuous functions
as a central problem in visualization. It may be used to clean up
Morse-Smale complexes [4] and Reeb graphs [8, 10], which are
powerful tools in the study and visualization of continuous data in
scientific computing. We therefore believe that the extension of
our results to three- and higher-dimensional manifolds as well as to
other topological spaces is important.
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