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ABSTRACT burdened with noise. While the source of the noise may range from

We continue the study of topological persistence [5] by investigat- PUrély physical such as imprecise measurements fo purely com-
ing the problem of simplifying a functioff in a way that removes putational such as the choice of a triangulation, the difficulties it

topological noise as determined by its persistence diagram [2]. To c_rea_ltes always remain. I_n this paper we consider Fhe _prob!em of
state our results, we call a functigran e-simplificationof another ridding the data of that noise by simplifying the function it defines.

; ; : ; It is important to note that whether something is noise or a fea-
function f if || f — g||, < e, and the persistence diagramsyadre > .
the same as those gfexcept all points within; -distance at most ture is in the eyes of the beholder. We endors_e the idea of Cohen-
¢ from the diagonal have been removed. We prove that for func- Steiner, Edelsbrunner, and Harer [2] that the importance of a fea-

tions f on a 2-manifold such-simplification exists, and we give ture can be quantified by the amount of change necessary to elimi-
an algorithm to construct them in the piecewise linear case nate it. We therefore study the question of how one would eliminate

a feature in order to both understand what parts of the domain it oc-

. . . cupies, and what the function looks like without it.
Categories and Subject Descriptors P

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non- Results and prior work. We build on the work of Edelsbrunner,
numerical Algorithms and ProblemsSeometrical problems and  Letscher, and Zomorodian who introduced the concept of topolog-
computations, Computations on discrete structu@®.1 Discrete ical persistence [5]. Applying this concept to continuous functions,
Mathematics]: Combinatorics—€ounting problems we view the resulting sequence of persistence diagrams as a char-
acterization in which each point represents a topological feature.
General Terms The importance of a feature is quantified by the distance of this

point from the diagonal. Points closer to the diagonal are deemed
less important than others and may be interpreted as representing
noise. This interpretation is in part justified by the stability of the

Algorithms, Theory

1. INTRODUCTION representation [2]. To state our results, we first introduce the cen-
In this section, we briefly motivate the problem studied in this tral concept of this paper. L&t be a topological spac¢,: X — R
paper, review prior related work, and formally state our results. a continuous functior), (f) its dimensiorp persistence diagram,

ande a positive constant.
Motivation. Scientists generate large quantities of continuous data,  DefriNITION. A dimensiorp e-simplificationof f is a function
such as electron densities, temperature distributions. Topological, . X — R such that|f — gll.. < eand all persistence diagrams
analysis can be used to make sense of such data, to detect interespf 4 are the same as those pExcept forD, (g) which is the same

ing features and to observe patterns that cannot be seen in the rawasD,,( ) but with all off-diagonal points ak-distances at most
Regardless of how the data is obtained, whether itis observed in ex-from the diagonal removed.

periments or computed in simulations, data is unfortunately always See Figure 1 for anillustration. Once we know thatmplifications

*The first two authors were partially supported by NSF under ©Xist fc_Jr all dimensions, we can it_erate the _constructi_on and erase
grant CCR-00-86013, by DARPA under grant HR0011-05-1-0007, the points close to the diagonal in all persistence diagrams. We
and by the Lawrence Livermore National Laboratory under grant refer to the resulting function as arsimplificationof f. In this
B543154. This work was performed under auspices of the U.S. paper, we consider the problem of findirgsimplifications of a
Department of Energy by University of California Lawrence Liver- ¢t 7, either restricted to a single dimension or iterated across
more National Laboratory under contract W-7405-Eng-48. . : . ) .

all dimensions. Our main result is a constructive proof that for 2-

manifolds such simplifications exist.
SIMPLIFICATION THEOREM FOR2-MANIFOLDS.

A. Given a 2-manifoldM, a functionf : M — R, a constant
e > 0, and a dimensiop = 0, 1, there exists a dimensign
e-simplificationg : M — R.

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-

clusive, royalty-free right to publish or reproduce this article, or to allow B. Forp = 0,1 and alle > § > 0 there exists a 2-manifold
others to do so, for Government purposes only. ' ’

SCG'06,June 5-7, 2006, Sedona, Arizona, USA. M and a functionf : M — R such thatifg : M — Risa
Copyright 2006 ACM 1-59593-340-9/06/000655.00. dimensiorp e-simplification of f then|| f — g , > € — 4.
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A Death T is a face ofs, theno is acofaceof 7. A simplicial complex

is the collection of faces of a finite number of simplices, any two
of which are either disjoint or meet in a common face Kifis a
simplicial complex inR?, then itsunderlying spacés the union

of its simplices together with the subspace topology inherited from
) R<. For a set of vertice#/ in K, we define itsstar as the set of
) simplices that have at least one vertexinand itslink as the set

of faces of simplices in the star that do not also belong to the star:

StU {ceK|JueUucedd},
LkU = {reK|rCoeStUrT¢StU}.

Birth

We consider a topological spade and a triangulationk” of X,

i.e., a simplicial complex whose underlying space is homeomor-
phic to X. In simplicial homology, g-chainis a formal sum of
p-simplices inK. We use modulo 2 arithmetic implying the coef-
ficients in the formal sum are 0 or 1. We can therefore think of the
p-chains as subsets of allsimplices, namely the ones with coeffi-
cient 1. Adding chains modulo 2, we obtain ip@up ofp-chains
denotedC, (K). Itis easy to see that, (K) is abelian. Théound-

ary of ap-simplex is the set of it§p—1)-dimensional faces, and the
boundary of g-chain is the sum of the boundaries of its simplices.

The problem of simplifying continuous functions has been studied Denoting the boundary map &, we observe that it is a homo-
before, in many different areas and from many different angles. The MOrphism fromC, (K) to C,—1(K). Noting thatd,d,+1 = 0, we

work related most directly to ours is on the simplification of Morse- t2ke the sequence of groups together with the homomorphisms to
Smale complexes initiated in [4]. Such complexes capture informa- ©Ptain achain complex

tion about the gradient vector field by partitioning the domain into Bpio Bpt1 ayp dp_1

regions of uniform flow. While the simplification algorithms given e = G = G = G =

in [1, 4, 6] follow the persistence order, they only simplify the com-  The group of p-cyclesis the kernel of thep-th boundary homo-
plex and not the function itself. The use of the simplified complex morphism,Z,,(K) = ker (8,), and thegroup of p-boundariesis
together with the original data may be tolerable for visualization the image of thep + 1)-st boundary homomorphisni,,(K) =
purposes, but it is not satisfactory when the simplified data is used ;;, (8ps+1). Sinced,d,1 = 0, B,(K) is a subgroup oZ,(K).

in the subsequent data analysis stage. It is worth noting that the The)-th homology groupf K is the quotient of the twddl, (K) =
example used for the proof of part B of the Simplification Theo- Z,(K)/B,(K). Thep-th Betti numbenof K is the rank of itg-th
rem shows that the error boundgf2 for simplification of a single homology group3,(K) = rank H,(K). Homology groups and
pair of critical vertices claimed by Bremer et al. [1] is in general  therefore Betti numbers are invariants of the topological space
unachievable. _ and do not depend on the choice of the triangulafidfv, 9].

In their original paper [5], Edelsbrunner et al. also consider the A topological space isontractibleif it is homotopy equivalent

question of topological simplification. However, there exist signifi- {5 3 point. In this case, all Betti numbers vanish, exceptdor
cant differences between their work and the results presented in thisynich is 1.

paper. The most obvious distinction comes from the problem state-

mentitself. Edelsbrunner etal. propose to move all the points of the pjecewise-linear framework. In this paper we consider real-val-
persistence diagram towards the diagonal regardless of their persiSyed. continuous functiong : M — R defined on a 2-manifold.
tence; in this paper, we require points of persistence higher¢han \jore specifically, we restrict our attention to functions defined on
to remain in place. In addition, we make explicit guarantees about ihe vertices of a triangulatioly of M and interpolated linearly
the distance between the simplified and the original functions. on all edges and triangles. Such functions are common in prac-

) ) ) ) _ tice (when the underlying space is sampled at discrete points), and
Outline. Section 2 reviews background material necessary for this gre of interest in scientific visualization. We assume fhist non-
paper. Section 3 gives an overview of our approach to constructing gegenerate, i.e., the function values are different at all vertices. Us-
e-simplifications. Section 4 presents the details of our main result, jng these function values, we refine the notions of star and link.
a procedure for simplifying a function in accordance with its per- gpecifically, thdower starof a vertexu is the set of simplices in
sistence diagram. Section 5 exhibits functions for which the error the star for whichu has the maximum value of any vertex. The
bounds that we achieve are optimal. Section 6 concludes the paperiower link of « is the set of faces of simplices in the lower star that

do not also belong to the lower star:

Figure 1: Left: Two embeddings of a 2-manifoldM in R®. The
functions f,g : M — R are the height functions of the light
shaded and the combined light and dark shaded embeddings.
Right: The dimension O persistence diagrams of and g. The
two points below the threshold distance from the diagonal are
present in the persistence diagram off but not in that of its e-
simplification g. The other two points appear in both diagrams.

2. BACKGROUND

We brief ) lcial | dn I Stu = {oceStu|lveo= f(v) < f(u)}

e briefly review simplicial complexes and homology groups. _

We refer the reader to Hatcher [7] or Munkres [9] for a thorough Lk-u = {relkulver= fv) < fw}

study of these subjects. We also review the concept of topological Upper starsand upper linksare defined symmetrically. Similar

persistence [2, 5, 11], restricting ourselves to modulo 2 arithmetic. to the star, we extend the concept of lower star to a set of ver-
tices,U, by taking the union of the individual lower stars: $f =

Complexes and homologyA p-simplexis the convex hull op + 1 U,cu St-u. Observe that iff is non-degenerate, the lower and up-

affinely independent points. The convex hull of any subset of those per stars and links of a vertex do not depend on the function values

points is again a simplex, and is calledage of the p-simplex. If but only on their ordering by function value.



We characterize all vertices by the Betti numbers of their lower and following [2] we draw all diagonal points, each infinitely of-
links. SinceK is a triangulation of a 2-manifold, the link of a  ten. By separating the points in whigtas index 0 from those in

vertex is a topological circle (a 1-sphere) and ofilyand3; of the which it has index 1 we get two multisets of points in the extended
lower link can be non-zero. We call a vertexa plane,R?, which we refer to as thdimensior0 and thedimension
regular point B, =1andp; = 0, 1 persistence diagram®y (/) andD1(f).
mlr;gglég if gg i (1) Z:ggi z 8’ Stability and transposi_ti_ons. Cohen-Ste_iner, Ed(_elsbrunner, and
maximum B, = 1andf; = 1. Harer [2] proved a stability result for persistence diagrams. The fol-

lowing is its restriction to 2-manifolds. Given two functioffisg :
A saddle issimpleif 3, of its lower link is 2, otherwise, it is multi- M — R, as above, we define the distance between them to be the
saddle In the discussion below we assume that all the saddI&S in  L.-norm of their differencef| f — g|| ., = sup,cy | f(z) —g(z)].
are simple, since we can unfold all the multi-saddles following the Thebottleneck distancketween the persistence diagramg @nd
procedure described in [4]. This assumption is not necessary butg is the infimum over all bijections : D,(f) — D,(g) of the
simplifies the exposition of the algorithm described in this paper. A supremum distance between corresponding points:
vertex is acritical point unless it is a regular point, and we assign .
to it anindexwhich is 0 for a minimum, 1 for a simple saddle, and d5(Dp(f), Dy(g)) = inf S llu = ~(w)| -
2 for a maximum. =

For technical reasons the functions are required tdabpee by
Persistence. Let o1, 03, ...,0n be a sequence of the simplices which we mean they have only finitely many critical values and
in K. Writing K; = {0, |j < i}, we call the sequencé = any sublevel set has only finite Betti numbers.
Ko C Ky C K; C ... C Ky = K afiltration of K if all K;
are complexes or, equivalently, the faces of every simplex precede
the simplex in the given sequence. For a sequences, ..., v,
of the vertices inK, we can construct a sequence of the simplices
by listing all lower stars in order and sorting the simplices within

each lower star in the order of non-decreasing dimension. If the 5yppose that we continuously change the function values at the
vertices are sorted in order of increasing function value, we call yertices, As a result the points in the persistence diagram move

STABILITY THEOREM. If f,g : M — R are two continuous,
tame functions then for any > 0, the bottleneck distance between
their dimensiorp persistence diagrams is not greater than the dis-
tance between the functiondiz (D, (f), Dyp(g)) < |If — 9|l -

the resulting sequence of complexes ltheer-star filtrationof the but not more then the amount of change of the values. Even though

function. From here on, all filtrations will be lower-star filtrations  the motion is therefore continuous, the pairs defining the points in

of functions defined at the vertices. _ the diagram caswitchvertices, but only at moments in time when
Forl <i < j < N, consider the homomorphisms 3, and~y these vertices have the same value.

implied by the inclusiond<;_1 C K; C K;_1 C Kj:
N g , SwITCH LEMMA. Transposing two consecutive vertiegsand
Hp (Ki-1) = Hp(Ki) — Hp(Kj-1) = Hp(K;). vi 41 in the ordering defining the lower star-filtration can only affect

We say that a homology class€ H,(Kj;) is bornin K; if 0 # the persistence pairs containingandvi 1.

A ¢ im (a). If Ais born inK;, we say that iliesentering; if Cohen-Steiner, Edelsbrunner, and Morozov [3] give an algorithm
B(A) ¢ im (Ba) andyB(A) € im (yBa). Observe that sinck’; to maintain the pairing if two adjacent simplices are transposed and
and K. differ by only one simplex, at most one homology class  the new sequence of complexes remains a filtration. In the follow-
is born or dies at any step in the filtration. If there is & H, (K) ing sections, we will be transposing adjacent vertices; 1 in
that is born inK’;, we callo; positive Similarly, if a homology the vertex ordering. The corresponding change in the lower-star
class dies entering;, we callo; negative If there exists a N0~ filtration is obtained by transposing the lower star0anduv; 1,

mology class\ that is born inK; and dies enterings;, we pair which reduces to a number of simplex transpositions. We get a first
simpliceso; ando; and call(o:, o;) apersistence pairlt is easy constraint on switches between persistence pairs by observing that
to see that ifr; is p-dimensional thew; is (p + 1)-dimensional. the indices in each pair are contiguous and increasing.

Edelsbrunner, Letscher, and Zomorodian [5] give an algorithm for
computing this persistence pairing in worst-case time cubic in the  SAME INDEX LEMMA. Transpositions between critical vertices
number of simplices in the given sequence. with different indices preserve the persistence pairing.

There is a close relation between the pairing of simplices and the . . . .
indices of critical points. To describe this, we consider a simplex A crucial second constraint on how switches between pairs can hap-

in the lower star of a vertexand a simplex in the lower star ofa  Pen follows from the analysis in [3]. To describe it, we call two

vertext. Assuming(c, ) is a persistence pair we sayandr are pairs of critical points(v;, v;) and(vx, v), nestedf i < k <1 <

locally pairedif s = ¢ and they areon-locally pairedif s # ¢. It J anddisjointif ¢ < j < k <. To use these notions for unpaired

is not difficult to prove the following observation. vertices, we consider th_em_ a}rtn‘lmally paired Wlth a dgmmy vertex
with subscript equal to infinity and we permit equality when we

DIMENSION-INDEX LEMMA. A vertexuv is regular iff all sim- compare subscripts that are infinite.

plices in its lower star are locally paired. Otherwise, it is critical

with index equal to the dimension of the non-locally paired sim- ~ NESTED-DISJOINTLEMMA. During atransposition of two con-

plex in its lower star. secutive vertices, the pairs can switch these vertices iff the pairs are

) ) o nested or disjoint both before and after the transposition.
For every persistence pair of simplicés, 7), we have the corre-

sponding persistence pair of critical poings, ¢). We call the latter This lemma in particular implies that if before the transposition
improperif s = ¢ andproperif s # t. We record information about  there exisk andl with k < 7 < i+1 < I such thaby, is paired with

all proper pairs by drawing the poing(s), f(¢)) in the plane. In vi+1 andwv; is paired withu;, then after; andv;41 are transposed
addition, for each unpaired simplex we draw the pgifits), co), we still have the same two pairs.



3. OVERVIEW particular the first edge conneatsto a vertex inT" implying that

In this section, we give a high-level view of our approach to find-  w iS in the lower link ofT', as required. _

ing ane-simplification and present the necessary structural lemmas. T0 prove the reverse direction, assumebelongs to the link

We leave the details of the algorithm to the next section. of T. Starting with St W we proceed along the lower-star fil-
tration by adding the simplices in ST" until we arrive at the lower

Basic strategy.Simplifications of a function are generated by can- Star of W U T In SLW, w forms its own component, and in

celling critical points in pairs, minima with saddles and saddles St-(W U T'), w belongs to a component that contains all of 5t

with maxima. In order to cancel a pair, one’s initial inclination may ~ The latter component cannot just grow fram by adding lower

be to change the values of both critical points, i.e., lower the saddle stars of regula_r vertices to it, because there is one negative saddle,

and raise the minimum for a minimum-saddle pair, and raise the > @nd adding its lower star merges two components. One of these

saddle and lower the maximum for a saddle-maximum pair. How- components contains and the other was started by another, older

ever, as the example in Section 5 shows, this may not always bevertex inW. Hence(w, t) is a persistence pair and = s, as
possible because extrema can get stuck as they encounter other critquired. [

ical vertices. To avoid this difficulty, we leave the values of extrema

Once we reacls, we add it to7" and reorder the vertices Il so

unchanged, and move only the saddles. Below we describe the casghat all of them become regular, includiagndt.

of lowering a saddle to its matching minimum; the case of raising
the saddle to its matching maximum is symmetric.

Let V be the ordering of the vertices by increasing function
value, and let(s,t) be a minimum-saddle persistence pair of the
lower-star filtration determined by". To cancel(s, t), we lower
a contiguous subsequence of vertic€s,which we imagine as a
flat region the saddle drags along while being lowered. Initially,
T = {t}. SinceT is contiguous inV/, it partitions V" into three
contiguous subsequencé®, T, U, as illustrated in Figure 2. Let
w be the last vertex ifiV. LoweringT means either moving past

| W T |

‘ St_W |St,w St_T ‘St,t

Figure 2: Top: The sequence of vertices is partitioned intd?’
with the last vertex w, T with the last vertex ¢, and U. Bottom:
The sequence of simplices defining the corresponding lower-
star filtration.

T (by assigning all vertices i’ a value slightly less tharfi(w)),

or expandindl” to includew (by setting the values of all vertices of
T equal tof (w)). The former approach is preferable, and we use
it whenw is not in the link of 7. A difficulty arises whenw is in

the link of T' since movingl" beloww may change the type from
regular to critical or vice versa or tura into a multi-saddle if it

is already a saddle. In this case, we expd@hghich preserves the
type of the vertex. However, if is a critical point with persistence
higher than(s, t) then we cannot afford to move the correspond-

Encountering a saddle. If w is in the link of T', it cannot be a
maximum, therefore the only remaining case is a saddle. To cope
with this case, we subdivide some of the edges in the lower star
of w in a way so thatw is no longer a saddle, and the new saddle
that replaces it is no longer in the link @f. To perform such a
subdivision, we need vertices in the linkwofthat are inU. If there

are no such vertices, we build a tunnelfdetween the lower star

of T and the lower star ofV’. To guarantee that this is possible,
we use again the invariant that guarantees that the lower sfiar of
is contractible. This ensures that the linkIdfs connected and we
can travel to a vertex ity by following this link.

The following structural lemma will play a crucial role in the
analysis presented in the next section. It assumes a partitibn of
into W, T, U and writesw for the last vertex o#¥/, as usual. In a
nutshell, the lemma says that unlike suggested by Figure 3, it is not
possible to draw a path throughthat enters the lower star 6f as
we move fromw in both directions and which locally separates the
vertices ofT" in the link of w.

NON-SEPARATIONLEMMA. Suppose StT' N Lk w # 0, the
star ofT' is contractible, and the only critical vertexihis a nega-
tive saddle. Then Lkw merges all pieces of ST" N Lk w into a
single component.

PROOF Label the vertices in the link ab) that belong tdl” in
a counter-clockwise order around asti,tz,...,tm. TO get a
contradiction, we suppose there are two verticgandt;, that are
not in the same component (Bt 7" N Lk w) U Lk_w. In other
words,t; andt; are locally separated by a path that passes through
w, connecting it on both sides to verticeslin as in Figure 3.

Since the star of” is contractible, there exists a path that con-
nectst; and¢; entirely within the lower star of". Adding ¢;w

ing point in the persistence diagram. We thus need to maintain a andwt; to the path forms a cycle. Sineeis incident to triangles

critical point with the same value and cannot immediately include
w into T'. This requirement dictates two properties we maintain as
invariants, namely thatbe the only critical vertex ifi' and that the
star of T be contractible.

Encountering a minimum. If w is a minimum and belongs to the
link of T' then the following lemma tells us thatis paired witht,
i.e.,w is equal tos.

PAIRED MINIMUM LEMMA. If w is a minimum that immedi-
ately precede§” in V, the star ofT" is contractible, and the only
critical vertex inT' is a negative saddle thenw = s iff w belongs
to the link of T'.

PROOF If w = sthen the definition of persistence pairs implies
a path starting atv whose edges belong to the lower starfofin

in the lower star ofJ on both sides, this cycle does not bound a
2-chain inside the lower star ¥ U T'. Indeed, suppose that it
does. Then that 2-chain must contain eithett; 1, or wt;t;—1
since they are the only two triangles in the lower staiéfu T
that containwt;. Assuming it containsvt;t;+1 and noting that the
cycle does not containt; 1, the 2-chain also containst; 1 1t;+2.
Continuing this way, the 2-chain must contain a triangle; ,u,
with « € U, which is impossible sincest;u is not in the lower
star of W U T.

Therefore, the cycle does not bound a 2-chain in the lower star
of W U T. But this implies that adding the lower star @fto
the lower star o/’ creates a non-zero class in the first homology
group. It follows that there is a positive saddleZiih contradict-
ing the supposition that the only critical vertex'lhis a negative
saddle. [



Since we only consider cancellations of minimum-saddle pairs, the
one critical pointt in 7' can be assumed to be a negative saddle.
Invariants I, II, 1l are trivially true whenl’ = {¢}. As in the
previous section, sinc€ is consecutive i/, it partitionsV into

three contiguous subsequencBs, T, U. Letw be the last vertex

tm of . We distinguish two cases, each with two subcases.

St_U

St_W

St_T

St_U tr t

Case |.The vertexw does not belong to the link @. Note that in
this case exchanging and7" in V changes neither the lower star
of w nor that ofT".

Case I.1. wis regular. After exchanging andT in V, w remains

regular. The Stability Theorem thus implies that there are no
changes in the pairing of the critical points.

Case |.2. w is critical. The Paired Minimum Lemma implies #

Figure 3: The addition of the lower star of T" to the lower star of
W creates a non-bounding cycle, which implies thaf” contains
a positive saddle. The partially indicated path passing through
w locally separatest; and ¢;.

Order of cancellations. The only remaining question is the or-
der in which we consider the pairs of critical points. Most natural

s. If w is a minimum or a maximum then the Same Index
Lemma implies that exchanging andT" does not affect the
pairing. If w is a positive saddle then it is either unpaired
or paired with a maximum. In the first case, we consider it
paired with a dummy vertex that succeeds all other vertices.
In either case, the two pairs that containand ¢ are nei-
ther nested nor disjoint. & is a negative saddle, the fact it
has not yet been cancelled implies its persistence exeeeds
Sincew precedes, the pairs that contaiw andt are neither
nested nor disjoint. The Nested-Disjoint Lemma thus contra-
dicts any switch in the pairing. In conclusion, exchanging
andT in V does not affect the pairing, as desired.

Case Il. The vertexw belongs to the link of".

would be the order of increasing persistence. Unfortunately, with case 11.1. w is regular. If St7 N Lk w is contractible, we add

our technique such an order cannot guaranteeftimthanged by

at moste. If two pairs overlap, canceling the one with higher per-
sistence may drag a vertex that has already been lowered during the
cancellation of a pair with lower persistence. Therefore, the change
in the function values may compound. Instead, we consider criti-
cal point pairs(s, t) in the order of increasing values tfi.e., we
sweep the vertices from bottom to top and lower the saddles that
belong to a pair of persistence less thanlf a vertex was low-

ered during the cancellation of one pair and then again during the
cancellation of another pair, then our technique guarantees that the
first pair was nested in the second. Therefore, the total change in
the function value of this vertex does not exceedThis implies

IIf = gll. < e asrequired.

Naturally, if we cancel minimum-saddle and saddle-maximum
pairs, we sweep the vertices twice, from bottom to top and from
top to bottom. The change in function values is still bounded by
e since the former pass lowers vertices by at nzosnd the latter
pass raises them by at mest

4. SIMPLIFICATION DETAILS

As described in the previous section, we cancel pairs in the order
of increasing values of the second vertex. To cancel a(pai,
we lower a collection of vertices, initializing it t6 = {¢}.

Case analysis.The algorithm proceeds by lowering or expanding
T one vertex at a time. To guarantee progress at each step, we
maintain three properties as invariants throughout the algorithm.

INVARIANT.

I. T contains only one critical vertex, namely
Il. the star off" is contractible;
Ill. T is a contiguous sequencelin

w to T by prepending it on the left. Thenis still the only
critical vertex inT’, the star off" is still contractible because
St(T — {w}) is a deformation retract of Jt, and7 is still
contiguous inV. In summary, Invariants I, Il, 1ll are pre-
served.

The situation is more complicated if SE' N Lk w is not
contractible. By the Non-separation Lemma, the union of
St T N Lk w and Lk_w is contractible, and by the regular-
ity of w, St-T' N Lk w consists of two components, as illus-
trated in Figure 4. Picking one of these components, we sub-
divide each edge connecting it to with two new vertices.
The value of the vertex closer to is chosen abov& but
belowU, and the value of the vertex further fromis cho-

sen belowI” but abovew. Within this range, we choose the
values such that we get two monotonically increasing paths
from Lk_w to U, one passing through the new vertices above
T and the other passing through the new vertices bé&lpas
shown in Figure 4. Observe that all new vertices are regular.
Indeed, each new vertex abo¥ehas a single vertex upper
link and each new vertex belo has a single vertex lower
link. The type of every other vertex remains unchanged as
increasing edges in its star are replaced by increasing edges
and decreasing edges are replaced by decreasing edges. After
subdivision, we add the new vertices bel@o 7', observ-

ing that Invariants |, Il, Ill are preserved. But now we are
back in the case in which ST" N Lk w is contractible, so

we can addv to 7", as discussed earlier.

Case I1.2. wis critical. It cannot be a maximum else its upper link

would be empty and it could not be in the link Bf

Consider first the case in whieh is a saddle. By assump-
tion, all saddles are simple which implies that the lower link
of w consists of two components and so does the upper link.



Figure 4. The vertex w is regular. Before the subdivision, Figure 5: The vertexw is a saddle. The lower star ofyU' sand-
St_T' N Lk w is not contractible while (St_7" N Lk w) ULk —w wiches a component of the lower star ofv. By subdividing its
is. By subdividing, we reduce the problem to the case in which ~ edges, we turnw into a regular vertex, replacing it by the new
St_T N Lk w is contractible. The new edges are dashed and  saddlez. The shading shows the lower stars after the subdivi-
the lower stars after subdivision are indicated by the shading. ~ sion. The arrows indicate the direction in which the values of
The arrows indicate the direction in which the values of the new the new vertices increase.

vertices increase.

To measure progress, we count the verticd®inEach step shrinks

The vertices in the upper link belongTband toU, and here Tunneling. In Case 11.2 whenw is a saddle, we assumed that there
we consider the easy case in which there are verticésinf are vertices o/ in both components of the upper link of Now
both components of the upper link. We will show how to re- we describe additional actions that put such vertices in the upper
duce the other case to this one shortly. By the Non-separation link in case they are missing. A crucial property in this construction
Lemma, the portions of the upper link that contain vertices is Invariant Il which implies that the link of” is connected. This
of T'sandwich one component of the lower linkwof and the link contains vertices both il (for examplew) and inU (since
portions that contain vertices &f sandwich the other com-  the link of ¢t € T contains vertices i#/). This implies that we can
ponent, as illustrated in Figure 5. We subdivide by placing a walk on this link fromw until we encounter a first vertexin U.
single vertex on each edge connectingvith the latter com- Let 7 be this path, as illustrated in Figure 6. By construction, all
ponent of the lower link. The values of the new vertices are vertices inr other than: belong tolV. To get a vertex of/ into the
chosen abov& and belowU. Within this range we choose  upper link ofw, we subdivide edges that connect interior vertices
the values such that the path of new vertices first decreases,of = with U. More precisely, we construct a connected strip of
attains its minimum at a vertex, and then increases, as in  triangles incident onr, starting with the triangle that connects the

Figure 5. All new vertices are regular, except figrwhich first edge ofr with a vertex inT" and ending with the triangle that
is a saddle. With these changes,is regular and all other connects the last edge ofwith a vertex inT. We subdivide the
vertices retain their original type. interior edges in the strip, placing two new vertices on each. The

value of the new vertex closer tois chosen abové' but belowlU
and the value of the new vertex further frams chosen belovl”
but abovew. Within these two ranges, we choose the values to get
two monotonically increasing paths fromto . Similar to Case
11.1, all new vertices are regular and the types of the other vertices
remain unchanged.

The new vertices in the path beldivare now added t@'. Note
that this preserves Invariants |, 11, lll. The other new vertices belong
to U so we succeeded in our goal of putting a vertextofnto
the upper link ofw. If necessary, we repeat this procedure for the
second component of the upper linkwof Finally, we proceed as
in Case I1.2.

We argue that: replacesw in the pairing using a continuity
argument. To start, we assign to each new vertex the value
of the point where it is placed. At this time, all new ver-
tices are regular and do not belong to any proper persistence
pair. Next, we continuously change the values of the new
vertices, updating the sequence through transpositions as we
go. This is done so that all new vertices remain regular at
all times, except for: which makes a crucial transposition
with w in which z becomes a saddle anda regular vertex.
The Switch Lemma implies that replacesw in its pair, as
desired.

We finally continue the simplification process by moving

and the other vertices pabt Because of the subdivision, we  Reordering. We now discuss the last step of the algorithm in more
are now in Case | implying that these transpositions do not detail, the reordering of the verticesh Recall thal” is contigu-
affect the pairing. The vertew is now regular, so we can  ousinV/, it starts ats and ends at, and all vertices iff” are regular

add it toT" as described in Case Il.1. except fors and¢. By removingt we decompose the lower star of
Consider second the case in whighis a minimum. By the T into components, and we Iét C T be the set of vertices in the
Paired Minimum Lemma, we hawe = s. We adds to T’ same component as To reordefT’, we

and reordefT" to make all its vertices regular, as described

below. The reordering finally cancels the pgirt). Step 1. removes from V;

Step 2. reverses;

W, therefore the algorithm halts after a finite number of steps. Step 3. add the reversed sequengeight aftert to V.



Figure 6: Connectingw to U in case the upper link of w has
only vertices in 7. The subdivision creates two monotonically
increasing paths of new vertices parallel to the pathr in the link
of T. The shading shows the lower stars after the subdivision.

The situations before and after the reordering are illustrated in Fig-
ure 7. The procedure is straightforward but it takes a bit of effort to
show that it is correct. In particular, we prove that after reordering
T all vertices inT" are regular. This is clear for all vertices different
from ¢ that do not belong t&'. We distinguish four cases.

Case i. The last vertext € T. Before reorderingt is a saddle
whose lower link consists of two components, one in the
lower star ofS. Step 3 effectively raises the vertices.$h
abovet, making one of the components disappear and turn-
ing t into a regular vertex.

Case ii. The first vertexs € T. Sinces is a minimum, its lower
link is empty. Hence all neighbors afbelong either tal’
ortoU, and the Non-separation Lemma implies that the por-
tion of the upper link ofs inside St. T is connected. This
is the same as Lks N St_S, and because the star Bfis
contractible, at least some of the neighborssdfelong to
U. This implies that the portion of the upper link defined by
vertices inS is contractible. Step 2 turns this portion into the
lower link ands into a regular vertex.

Case iii. A vertexu € S whose link is contained in the lower star
of S. The upper link ofu becomes its lower link and vice
versa, implying that: remains regular.

Case iv. A vertexv € S, different froms, whose lower link is not
contained in the lower star &f. We first observe that has
no neighbors il¥. To see this, we consider the lower-star
filtration defined byl (before the reordering). Starting with
the lower star ofi’ U {s} we add lower stars of vertices
in T until we arrive at the lower star di U T'. For our
argument only the vertices in the same component ae
relevant so we consider S U S). But if v has neighbors
in W then this process would have merged the component
of s with another component, contradicting the fact that all
vertices inS — {s} are regular. This shows that all neighbors
not in 7" belong to the upper link of. The neighbors in
T all belong toS and at least some of them are lower than
v. These vertices form a contractible lower link @f else
v would not be regular. Similarly, the neighborsSnabove
v form a contractible portion of the upper link of else we
would have gotten a contradiction to Invariant Il at the time
v was added t@". It thus follows that reversing preserves
v as a regular vertex.

Figure 7: Reordering the vertices inT'. Before the reordering,
all vertices in T are regular except fors and ¢. After reordering,
all vertices in T" are regular. Plus and minus signs distinguish
between upper and lower links. The cases in which the reorder-
ing swaps upper and lower links are marked by two signs.

Multi-saddles. We note that it is not necessary to unfold all multi-
saddles for the algorithm to work. Generally, we distinguish sad-
dles with persistence larger thanwhich do not have to be un-
folded, and saddles with persistence at mosthich have to be
unfolded. However, this is oversimplifying the situation because a
multi-saddle can be part of multiple pairs with persistence larger as
well as smaller or equal ta The Nested-Disjoint Lemma implies
that a multi-saddle can be unfolded such that the resulting positive
simple saddles have higher function value than the resulting nega-
tive simple saddles. Similarly, pairs with smaller persistence can be
nested within pairs of larger persistence. Finally, the resulting sim-
ple saddles with persistence larger thaare assigned the function
value of the multi-saddle so that the unfolding does not interfere
with bounding the change of the function through simplification.

5. LOWER BOUND

In this section, we prove part B of the Simplification Theorem
for 2-Manifolds stated in Section 1: for= 0,1 and alle > § > 0
there exists a 2-manifold and a functionf : M — R such
thatifg : M — R is a dimensiorp e-simplification of f then
Ilf —gll., > € — 6. The topology of the 2-manifold is less im-
portant for the proof than the details of the function. We thus let
M be the 2-sphere and we choag@s the (vertical) height func-
tion of the embedding dil displayed in Figure 8. There are three
critical points with similar heightsf (P) = r —¢, f(Q) =r — 4,
f(R) = r, where0 < 6 < e. The two minima have function
valuesf(A) = a < f(B) = b that are both much smaller than
r, and the maximum has a function valfie¢Z) = z that is much
larger than. The critical points are paired 48, Q), (P, R), leav-
ing A and Z unpaired. The off-diagonal points in the persistence
diagrams are therefore

Do(f) (a,0), (b,r —9);
Di(f) (r—er);
Da(f) (%,00).

All points haveL; -distance larger thanfrom the diagonal, except
for (r — €,7) whoseL;-distance from the diagonal is To get a
dimension Je-simplification, we thus need to cand@lwith R and
leave the other critical points in tact (or replace them by new critical
points at the same height). It seems plausible thdbes not have



Figure 8: Embedding of the 2-sphereM in R* such that f :
M — R is its height function. There are two minima, A and
B, two saddles,P and @, and two maxima, R and Z. The two
ascending paths fromA to P decomposeM into a left and a
right hemisphere.

a dimension Xe — §")-simplification withd < ¢’ < e. Indeed, we
cannot lowerR by more thard since it gets stuck ap. Hence we
need to raisé’ by at least — §. A more formal argument support-
ing this conclusion will be presented shortly. Since this works for
arbitrarily smallé > 0, this implies the claimed lower bound. To
prove the same bound fgr = 0 we use the construction upside-
down, that is, we substitute f for f.

We now give the more formal argument for the claim that the
difference betweerf andg is ||f —g||,, > ¢ —d. To get a
contradiction, we assume there is a dimensiogisimplification
g: M — Rof fwith | f—g|, =¢— ¢ forsomed’ > 4. Let
a be the cycle consisting of two monotonically increasing paths
from A to P, as drawn in Figure 8. It decomposes the 2-sphere into
a closed left hemisphere (containit® and a closed right hemi-
sphere (containing3, Q, R). Consider the restrictiong and g
of f andg to the right hemisphere. The diagray(f) is the
same a®o(f). By the Stability Theorem, the diagrabm (g) con-
tains a point(t’, ¢’) at Loo-distance at most from (b,r — §) in
Do(f). The valueg’ is that of a saddle)’ of g. By definition of
e-simplification, we havey(Q’) = ¢ = r — §, which is larger
thang(z) < f(x) + (e — §’) < r — 4 for any pointz on a. This
implies thatQ’ lies in the interior of the right hemisphere and is
therefore also a saddle gf Furthermore, there are no other fi-
nite off-diagonal points in the persistence diagramg.df follows
thatg has only one saddle, namel/. A similar argument implies
that g has only one maximuny’, in the left hemisphere and that
g(Z') = z. Since there is only one maximum and only one saddle,
we can draw a path fronz’ to @’ that monotonically decreases
in g. This path crosses the cyale But the pointsz on o have
g(z) < r— § which is less than the values &f andQ’ at the two
ends. This contradicts the monotonicity of the path and implies
Ilf —gll., > e€— 6, asrequired.

6. DISCUSSION

The main contribution of this paper is a constructive proof of
the existence ot-simplifications for continuous functions on 2-
manifolds. The proof extends to 2-manifolds with boundary since
we can convert those into 2-manifolds without boundary by glu-
ing a disk to each boundary cycle. A curious aspect of our proof
is that dimension 0 and dimension 1 homology can be simplified
independently. Indeed, we can cancel all minimum-saddle pairs
of persistence at mostwhile leaving all saddle-maximum pairs
intact, or vice versa. It is also worthwhile to mention that the algo-
rithm is combinatorial and we are free to assign function values that
are consistent with the computed ordering of the vertices. How-
ever, our algorithm is not incremental in the sense of continuously
increasing the error threshold and this way generating a hierarchy
of simplifications. The main reason for this shortcoming is that
the sequence of pairs cancelled by our algorithm is generally not
sorted by persistence. We leave the design of such an incremental
simplification algorithm as an open question.

The authors consider the simplification of continuous functions
as a central problem in visualization. It may be used to clean up
Morse-Smale complexes [4] and Reeb graphs [8, 10], which are
powerful tools in the study and visualization of continuous data in
scientific computing. We therefore believe that the extension of
our results to three- and higher-dimensional manifolds as well as to
other topological spaces is important.
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