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ABSTRACT

We study the evolution of the Reeb graph of a time-varying con-
tinuous function defined in three-dimensional space. While main-
taining the Reeb graph, we compress the evolving sequence into
a single, partially persistent data structure. We envision this data
structure as a useful tool in visualizing real-valued space-time data
obtained from computational simulations of physical processes.

Categoriesand Subject Descriptors: 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling
General Terms: Algorithms, Theory.

Keywords: Differential and computational topology, Morse func-
tions, critical points, level sets, Reeb graph, triangulations, combi-
natorial algorithms.

1. INTRODUCTION

This paper studies the evolution of the Reeb graph of a continuous
function that varies with time. We begin by motivating the topic,
reviewing related prior work, and stating our results.

Motivation. Physical processes that are measured over time, or
modeled and simulated on a computer, can produce large amounts
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of data that must be interpreted with the assistance of computa-
tional tools. Such data arises in a wide variety of studies, includ-
ing computational fluid dynamics [8], oceanography[5], and cli-
mate modeling [17]. The data typically consists of finitely many
points in space-time and a measured value for each. Independent
of whether or not the points are sampled on a regular grid, we can
connect them into a mesh and interpolate the values to obtain a con-
tinuous function over the entire domain. Piecewise linear interpo-
lation is common for large amounts of data, because of its relative
ease; multi-linear interpolation is also used for regular grids.

A useful tool in interpreting the data is graphical visualization,
often through level sets, or iso-surfaces of a continuous function
derived from the data. Fixing a real number s, the level set con-
sists of all points in the domain whose function values are equal to
s. In R3, this is generically a surface that is then displayed. By
varying s, we can study the variation in the data. Topological fea-
tures of the level sets, such as connected components, handles, and
voids, can be important aids in interpreting the data. By encoding
the evolution of these features, the Reeb graph compactly repre-
sents topological information of all level sets. As we pass through
time, the Reeb graph goes through an evolution of its own, under-
going structural changes at birth-death points and at interchanges
of critical points. The evolution of the Reeb graph thus represents a
2-parameter family of level sets. We suggest that this 2-parameter
family encoded in a compact data structure is a useful representa-
tion of space-time data.

Related prior work. In the interactive exploration of scientific
data, Reeb graphs are used to select meaningful level sets [3] and
to efficiently compute them [15]. An extensive discussion of Reeb
graphs and related structures in geometric modeling and visualiza-
tion applications can be found in [14]. All published algorithms for
Reeb graphs take as input a function defined on a triangulated man-
ifold. We express their running time as functions of n, the number
of simplices in the triangulation. The first algorithm for functions
on 2-manifolds due to Shinagawa and Kunii [22] takes time O(n?)
in the worst case. The case of loop-free Reeb graphs, also known as
contour trees, has received special attention because the algorithms
are simpler and Reeb graphs of the practically important class of
simply-connected domains have no loops. An algorithm that con-
structs contour trees of functions on simply-connected manifolds
of constant dimension in time O(nlogn) has been suggested in
[7]. For the case of 3-manifolds, this algorithm has been extended
to include information about the genus of the level surfaces [20].
Recently, Cole-McLaughlin et al. [9] returned to the general case,
giving tight bounds on the number of loops in Reeb graphs of func-
tions on 2-manifolds and describing an O(n log n) time algorithm
to construct them.



Results. In this paper, we study the details of how the Reeb graph
of a smooth function on three-dimensional space evolves over time.
It will be convenient to compactify the space to a closed manifold,
which we do by adding the point at infinity, effectively creating the
topology of the 3-sphere, denoted by S®. Our first contribution is
a complete enumeration of the type of combinatorial changes the
Reeb graph experiences:

e nodes disappear in pairs, contracting arcs to points (inversely,
node appear in pairs, anti-contracting arcs);

e nodes swap their positions along the arcs of the graph.

Perhaps surprisingly, the second type of change is more interesting,
falls into more sub-types, and is algorithmically more difficult to
handle than the first type. Based on this classification, we give an
algorithm that maintains the Reeb graph through time and stores
the evolution in a partially persistent data structure. The size of this
data structure is proportional to the size of the initial Reeb graph, at
time zero, plus the number of changes it experiences through time.

Outline. Section 2 reviews background material. Section 3 enu-
merates the types of changes experienced by a Reeb graph. Sec-
tion 4 and 5 describe the algorithm for maintaining the Reeb graph.
Section 6 concludes the paper and states a few open questions.

2. MATHEMATICAL BACKGROUND

We need some background from Morse theory [16, 18] and from
combinatorial and algebraic topology [2, 19].

Smooth maps on manifolds. Let M be a smooth, compact d-
manifold without boundary and f : M — R a smooth map. As-
suming a local coordinate system in its neighborhood, x € M is
a critical point of f if all partial derivatives vanish at z. If z is
a critical point, f(z) is a critical value. Non-critical points and
non-critical values are called regular pointsand regular values, re-
spectively. The Hessian at « is the matrix of second-order partial
derivatives. A critical point x is non-degenerate if the Hessian at =
is non-singular. The index of a critical point z, denoted by index z,
is the number of negative eigenvalues of the Hessian. Intuitively, it
is the number of mutually orthogonal directions at = along which f
decreases. For d = 3 there are four types of non-degenerate criti-
cal points: minima with index 0, 1-saddles with index 1, 2-saddles
with index 2, and maxima with index 3. A function f is Morse if

1. all critical points are non-degenerate;
Il. f(z) # f(y) whenever z # y are critical.

We will refer to | and Il as Genericity Conditions as they pre-
vent certain non-generic configurations of the critical points. This
choice of name is justified because Morse functions are dense in
C*° (M), the class of smooth functions on the manifold. In other
words, for every smooth function there is an arbitrarily small per-
turbation that makes it a Morse function.

The critical points of a Morse function and their indices capture
a whole lot of information about the manifold on which the func-
tion is defined. For example, the Euler characteristic of the mani-
fold M is equal to the alternating sum of critical points, x(M) =
S (=1)mdex= - Another useful tool in the study of manifolds is
the incremental construction by adding one cell at a time. Call
a space homeomorphic to the k-dimensional ball a k-cell. Let
f : M — R be a Morse function and define M, = f~'(—oo0, s].
The boundary of M is the level set, f’l(s), defined by s € R. If

s is a regular value then f~'(s) is a (d — 1)-manifold. For posi-
tive e consider M. and assume that f has a single critical point
with function value in (s, s + ¢]. If the index of that critical point
is k then M, . is homotopy equivalent to M with a single k-cell
attached.

Reeb graph. A level set of f is not necessarily connected. Calling
two points z,y € M equivalent if f(z) = f(y) and both points
belong to the same component of the level set, we obtain the Reeb
graph as the quotient space in which every equivalence class is
represented by a point and connectivity is defined in terms of the
quotient topology [21]. Figure 1 illustrates the definition for a 2-
manifold of genus two. We call a point on the Reeb graph a node

Figure 1: The Reeb graph of the function f on a 2-manifold, which maps
every point of the double torus to its distance above a horizontal plane below
the surface.

if the corresponding level set component passes through a critical
point of f. The rest of the Reeb graph consists of arcs connecting
the nodes. The degree of a node is the number of arcs incident
to the node. A minimum creates and a maximum destroys a level
set component and both correspond to degree-1 nodes. A saddle
that splits one level set component in two or merges two to one
corresponds to a degree-3 node. There are also saddles that alter
the genus but do not affect the number of components, and they
correspond to degree-2 nodes in the Reeb graph. Nodes of degree
higher than three occur only for non-Morse functions.

In mathematics, the Reeb graph is often used to study the man-
ifold M that forms the domain of the function. For example, the
Reeb graph in Figure 1 reveals that the function is defined on a dou-
ble torus, assuming we know it is an orientable 2-manifold without
boundary. In contrast, we will use the Reeb graph to study the
behavior of functions. The domain of interest is R? but it is conve-
nient to compactify it and consider functions on the 3-sphere, S3.
All our Reeb graphs will reveal the (un-exciting) connectivity of S3
by being trees, but the structure of the tree will tell us something
about the chosen function f.

Jacobi curves. We use Reeb graphs to understand a function at
moments in time and Jacobi curves, as introduced in [12], to get a
glimpse of its evolution through time. We introduce this concept
for the slightly more general case of two Morse functions, f, g :
M — R; the specific case of a time-varying function, f, is obtained
by adding time as an extra dimension to the domain and letting g
represent time. For a regular value ¢ € R, we have the level set
g~ (t) and the restriction of f to this level set, f; : g~ '(t) — R.
The Jacobi curve of f and g is the closure of the set of critical
points of the functions f:, for all ¢ € R. The closure operation
adds the critical points of f restricted to level sets at critical values,
as well as the critical points of g, which form singularities in these



level sets. Figure 2 illustrates the definition by showing the Jacobi
curve of two smooth functions on a piece of the two-dimensional
plane.

Figure 2: The functions f and g are represented by their dotted and solid
level curves. The Jacobi curve is drawn in bold solid lines. The birth-death
points and the critical points of the two functions are marked by white and
shaded dots, respectively.

We consider a 1-parameter family of Morse functions on the 3-
sphere, f : S* x R — R, and introduce an auxiliary function
g : S* xR — R defined by g(z,t) = t. A level set has the
form g~ (t) = S* x ¢, and the restriction of f to this level set is
fi +' S® x t — R. The Jacobi curve of f and g may consist of sev-
eral components, and in the assumed generic case each is a closed
1-manifold. We can identify the birth-death points where the level
sets of f and g and the Jacobi curve have a common normal direc-
tion. To understand these points, imagine a level set in the form
of a (two-dimensional) sphere deforming, sprouting a bud, as we
go forward in time. The bud has two critical points, one a maxi-
mum and the other a 2-saddle. At the time when the bud just starts
sprouting there is a point on the sphere, a birth point, where both
these critical points are born. Run this in reverse order to under-
stand a death point. We decompose the Jacobi curve into segments
by cutting it at the birth-death points. The index of the critical point
tracing a segment is the same everywhere along the segment. The
indices within two segments that meet at a birth-death point differ
by one:

INDEX LEMMA. Let f : Ml x R — R be a 1-parameter family of
Morse functions. The indices of two critical points created
or destroyed at a birth-death point differ by exactly one.

PROOF. At time ¢, let f; have a single birth point. We can choose a
small positive  such that there are no other birth-death points with
time in [t — e,t + ¢]. Denote by z and y the two newly created
critical pointsin f:1. and let kK = index x < indexy. The point z
either destroys a homology class of dimension k£ — 1 or it introduces
one of dimension k. The former case is ruled out as indexy > k,
and a cell of dimension larger than or equal to & cannot compensate
for the destroyed dimension k& — 1 class. In the latter case, when x
creates a homology class of dimension &, we need a (k + 1)-cell
to cancel the homology class, which implies that indexy = k + 1.
The claim follows.

Piecewise linear functions. A triangulation of a manifold M is a
simplicial complex, K, whose underlying space is homeomorphic
to M [2]. Given values at the vertices, we obtain a continuous func-
tion on M by linear interpolation over the simplices of the triangu-
lation. We need some definitions to talk about the local structure of

the triangulation and the function. The star of a vertex u consists of
all simplices that share u, including w itself, and the link consists of
all faces of simplices in the star that are disjoint from w. The lower
link is the subset of the link induced by vertices with function value
less than u:

Stu = {oeK|uCo},
Lku = {reK|7Co€Stu,ugr},
Lk_u = {relkulver= f(v)<flu}

Critical points of piecewise linear functions have been introduced
by Banchoff [4] as the vertices whose lower links have Euler char-
acteristic different from 1. Our classification is finer than Ban-
choff’s and based on the reduced Betti numbers of the lower link.
The k-th reduced Betti number, denoted as 3y, is the rank of the
k-th reduced homology group of the lower link: 3, = rank Hg.
The reduced Betti numbers are the same as the usual (un-reduced)
Betti numbers, except that 3o = (o — 1 for non-empty lower links,
and 1 = 1 for empty lower links [19]. When the link is a
2-sphere only 8_1 through (2 can be non-zero. Simple critical
points have exactly one non-zero reduced Betti number, which is
equal to 1; see Table 1. The first case in which this definition dif-

| B=1 Bo B B

regular 0 0 0 0
minimum 1 0 0 0
1-saddle 0 1 0 0
2-saddle 0 0 1 0
maximum 0 0 0 1

Table 1: Classification of vertices into regular and simple critical points
using the reduced Betti numbers of the lower link.

fers from Banchoff’s is a double saddle obtained by combining a
1- and a 2-saddle into a single vertex. The Euler characteristic of
the lower link is one, which implies that Banchoff’s definition does
not recognize it as critical. A multiple saddle is a critical point
that falls outside the classification of Table 1 and therefore satisfies
B_1 = P2 = 0and By + /1 > 2. By modifying the simplicial
complex, it can be unfolded into simple 1-saddles and 2-saddles as
explained in [13].

3. TIME-VARYING REEB GRAPHS

In this section, we study how the Reeb graph of a function changes
with time. Specifically, we give a complete enumeration of the
combinatorial changes that occur for a Morse function on S3.

Jacobi curves connect Reeb graphs. Let R, be the Reeb graph
of f, the function on S® at time ¢. The nodes of R; correspond
to the critical points of f:, and as we vary t, they trace out the
segments of the Jacobi curve. The segments connect the family
through time, giving us a mechanism for identifying nodes in dif-
ferent Reeb graphs. We illustrate this idea in Figure 3.

Generically, the function f; is Morse. However, there are dis-
crete moments in time at which f; violates one or both Genericity
Conditions of Morse functions and the Reeb graph of f: experi-
ences a combinatorial change. Since we have only one varying
parameter, namely time, we may assume that there is only a single
violation of the Genericity Conditions at any of these discrete mo-
ments, and there are no violations at all other times. Condition | is
violated iff f; has a birth-death point at which a cancellation anni-
hilates two converging critical points or an anti-cancellation gives
birth to two diverging critical points. Condition I1 is violated iff f;



Figure 3: Reeb graphs at three moments in time whose nodes are connected
by two segments of the Jacobi curve.

has two critical points z # y with fi(z) = f:(y) that form an in-
terchange. The two critical points may be independent and have no
effect on the Reeb graph, or they may belong to the same level set
component of f; and correspond to two nodes that swap their po-
sitions along the Reeb graph. We now analyze the changes caused
by birth-death points and by interchanges in detail.

Nodes appear and disappear. When time passes the moment of a
birth point, we get two new critical points and correspondingly two
new nodes connected by an arc in the Reeb graph. By the Index
Lemma, the indices of the two critical points differ by one, leaving
three possibilities: 0-1, 1-2, and 2-3. Consider first the 0-1 case in
which a minimum and a 1-saddle are born. In the Reeb graph, we
get a new degree-1 node that starts an arc ending at a new degree-3
node. In other words, the Reeb graph sprouts a new arc downward
from an existing branch; see Figure 4. The 2-3 case is upside-down
symmetric to the 0-1 case, with the Reeb graph sprouting a new arc
upward from an existing branch.

Figure 4: Level sets and Reeb graphs around a 0-1 birth point. Time in-
creases from left to right and the level set parameter, indicated by a rect-
angular slider bar, increases from bottom to top. Going forward in time,
we see the sprouting of a bud, while going backward in time we see its
retraction.

Consider second the 1-2 case in which a 1-saddle and a 2-saddle
are born. In the Reeb graph we get two new degree-2 nodes that
effectively refine an arc by decomposing it into three arcs. As il-
lustrated in Figure 5, this event corresponds to the appearance of a
short-lived handle in the evolution of level sets. Turning the pic-

ture upside-down does not change anything, which shows that the
case is symmetric to itself. We have similar three cases when time

T 1?2

Figure 5: Level sets and Reeb graphs around a 1-2 birth point. Time in-
creases from left to right and the level set parameter increases from bottom
to top. Going forward in time, we see a refinement of an arc in the Reeb
graph and going backward we see a coarsening.

passes the moment of a death point. Two critical points of f; con-
verge and annihilate when they collide, and correspondingly an arc
of the Reeb graph contracts to a point, effectively removing its two
nodes. The 0-1 and 2-3 cases are illustrated in Figure 4, which we
now read from right to left, and the 1-2 case is illustrated in Figure
5, which we also read backward, from right to left.

Nodes swap. Nodes of the Reeb graph swap position in the Reeb
graph when the corresponding critical points, z and y, form an in-
terchange and, at that moment, belong to the same level set compo-
nent. Assume without loss of generality that fi—.(z) < fi—<(y)
and fii-(z) > fi+e(y). We have four choices for each of = and
y depending on whether they add or remove a handle, merge two
level set components or split a level set component. This gives a
total of sixteen configurations. We analyze possible before and af-
ter combinations and pair them, giving us the cases illustrated in
Figure 6. It is convenient to group the cases with similar start-
ing configurations together. We use +, —, M, S to mean ‘handle
addition’, “handle deletion’, ‘component merge’, and ‘component
split’, respectively, and a pair of these to indicate the types of = and

Y.

Case 1 (++,+—,—+,——) Bothz and y change the genus and
their corresponding nodes simply swap their positions in the
Reeb graph. [We pair ++ with itself to get Case 1la, +—
with —+ to get Case 1b, and —— with itself to get Case
1c].

Case 2 (+M, M+, —M, M—) We consider two sub-cases.

(M+) Before the swap, = merges two components and y
adds a handle. There are two possible configurations
after the swap. Either y involves the two components
that were merged by z, so x and y just swap, or y in-
volves only one of the two components, so y goes down
one of the branches at x. [In the first configuration, we
pair M+ with itself to get Case 2a, and in the second
we pair M+ with +M to get Case 2b.]



(M—) Before the swap, = merges two components and y
removes a handle. After the swap, y moves down one
of the branches at . [We pair M— with —M to get
Case 2c].

Case 3 (—S,S—,+S,S+) We consider two sub-cases.

(—S) Before the swap, = deletes a handle and y splits the
component. There are two possible configurations af-
ter the swap. Either y breaks a handle and z splits the
component into two, so the nodes = and y swap, or x
involves only one of the two components split by ¥, so
node x goes up one of the branches at node y. [In the
first configuration, we pair —S with itself to get Case
3a, and in the second we pair —S with S— to get Case
3b.]

(+S) Before the swap, = adds a handle and y splits the com-
ponent. After the swap, « moves up one of the branches
at y. [We pair +S with S+ to get Case 3c].

Case 4 (MM) Three components merge into one, and the only
change between before and after is the order of merging. [We
pair MM with itself.]

Case 5 (MS,SM) Before the swap, = merges two components
and y splits the merged component. After the swap, y splits
one of the components which merge at = before the swap,
and x merges one of the split components with the remaining
component. [We pair MS with SM.]

Case 6 (SS) A component splits into three, and the only change
between before and after is the order of splitting. [We pair
SS with itself.]

The pairing of cases indicates a symmetry between before and after
configurations. There is also the symmetry we observe when we
exchange inside with outside. Equivalently, we substitute — f for
f, which turns the Reeb graph upside-down, exchanging minima
with maxima and 1-saddles with 2-saddles.

4. ABSTRACT ALGORITHM

In this section, we introduce an algorithm for maintaining a Reeb
graph through time. The algorithm is explained at the abstract level
without going into implementation details. Section 5 will describe
an adaptation of the algorithm to the piecewise linear case.

Data types. We represent time by a conventional priority queue
storing birth-death and interchange events prioritized by the mo-
ments in time they occur. At a given moment, ¢, the time data type
supports the following operations:

INSERT(e) : add the future event e (it occurs after time ¢);

NEXTEVENT : return the earliest, top priority event and delete it
from the queue;

DELETE(e) : delete the event e from the queue.

We maintain the Reeb graph as a collection of nodes, and arcs that
connect the nodes. Each node knows about its incident arcs and
about the segment of the Jacobi curve that contains the correspond-
ing critical point. Each arc knows its start-node and end-node and
the time when they will die at a death point or swap at an inter-
change. At a given moment in time, ¢, the Reeb graph data type
supports the following operations:
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Figure 6: On the left, Reeb graph portions before and after the interchange
z and y. On the right, level sets at a value just below the function value
of z and y. In each case, the index of a critical point can be inferred from
whether the level set merges (index 1) or splits (index 2) locally at the criti-
cal point.



SEGMENT(z) : return the segment of the Jacobi curve that con-
tains the critical point that corresponds to node ;

NODES(a) : return the start-node and the end-node of arc a;
REMOVEARC(a) : remove the arc a from the Reeb graph;

ADDARC(z,y) : add an arc connecting the nodes = and y in the
Reeb graph.

We have similar operations for removing and adding nodes, which
are invoked whenever we remove or add arcs. The Jacobi curve
is stored as a collection of segments joined at shared birth-death
points. Each segment knows its endpoints, the index of its critical
point, and the corresponding node in the Reeb graph, if any. Each
birth-death point knows its incident segments. At a given moment
in time, ¢, the data type for the Jacobi curve supports the following
operations:

NODE(7) : return the node in the Reeb graph that corresponds to
the critical point on the segment ~;

NEXTXING(v,~") : return the next interchange (after time ¢) of
the critical points tracing the segments v and ~'.

Finally, this data type supports the operation BDPOINTS that re-
turns all birth-death points of the function f. We also have a data
type for the input function, f : S* xR — R. One of the operations
it supports connects the level sets with the Reeb graph:

PATH(u) : return a path in the Reeb graph that contains the point
representing the level set component of f; passing through
the vertex w in the triangulation.

This operation will be instrumental in distinguishing between the
various configurations at an interchange event.

Sweeping time. We use the operations provided by the various data
types to maintain the Reeb graph of f; through time. We assume
that data is available in a finite range, from time 0 to 1. Starting with
the Reeb graph Ry at time ¢ = 0, we maintain R: by sweeping for-
ward in time, using the Jacobi curve as a path for its nodes. The
time data type is initialized by inserting all birth-death points pro-
vided by BDPOINTS. Interchange events are inserted and deleted
as arcs appear and disappear in the Reeb graph. Events are pro-
cessed in the order they are returned by repeated execution of the
NEXTEVENT operation.

Case birth event. The type is 0-1, 1-2, or 2-3 and can be deter-
mined from the indices of the two segments that meet at the
birth point « on the Jacobi curve. Next, we determine the arc
a on PATH(u) to modify. Finally, for cases 0-1, and 2-3 we
refine a and sprout a bud, and for case 1-2 we refine a by
decomposing it into three arcs.

Case death event. We retrieve the nodes in the Reeb graph that
correspond to the two segments ~ and ~ that share the death

point on the Jacobi curve: z = NODE(~y) and y = NODE(Y').

Then we contract the arc connecting = and y to a point and
finally delete this point by removing three arcs and adding
one.

Case interchange event. We swap the two nodes x and y that cor-
respond to the critical points of the interchange by removing
and adding arcs as indicated in Figure 6. Determining which
arcs below x or above y to remove is equivalent to deciding
between sub-cases of the interchange event. Such a decision
is needed in Cases 2 to 6 and made with the help of the
PATH operation.

As mentioned earlier, each arc removal implies the deletion of an
interchange event, and each arc addition implies the insertion of
one into the time data type. To explain how we distinguish between
the various sub-cases of an interchange event, we consider Case
2 illustrated in Figure 6. In Ky, = and y have the same function
value and the lower link of y has two components. Letting « and
v be a vertex in each, we compute the arcs a and b incident to and
below z in PATH(u) and PATH(v). We have Case 2a iff a # b.
We distinguish between Cases 2b and 2c using the index of y
and identify a = b as the arc below x to be refined by y in the new
Reeb graph. Case 4 is similar, except that the only decision to be
made is which arc below z gets refined by y. Cases 3 and 6 are
upside-down symmetric to Cases 2 and 4 and decided by calling
PATH for vertices in the upper link components of z. Finally, Case
5 is a bit different and decided by calling PATH for = and for y.

5. PLIMPLEMENTATION

In this section, we describe how to implement the algorithm of Sec-
tion 4 for a piecewise linear function defined on a triangulation of
the 3-sphere cross time. We finesse technical difficulties by rep-
resenting time as a spiraling line forming a universal cover of an
oriented circle.

Data structures. We can now describe specific data structures im-
plementing the four abstract data types: time, Reeb graph, Jacobi
curve, and input function. A standard implementation of the pri-
ority queue will do for time, and a standard graph representation
will do for the Reeb graph [1]. The Jacobi curve is represented
by cyclic lists of edges in the input triangulation, K. Each cy-
cle is decomposed into segments of maximal linear lists of edges
that are monotonous in time. The input function is represented by
a standard data structure for four-dimensional complexes, see e.g.
Brisson [6], enhanced with function values stored at the vertices.

Let K denote the three-dimensional slice at time ¢ of the four-
dimensional triangulation K. The vertices of K are points on
edges of K, the edges are slices of triangles, etc. The most impor-
tant operation supported by the input function data type is PATH (u):
given a vertex u of Ky, return a path in the Reeb graph R, that
contains the point representing the level set component that passes
through u. To compute this path, we walk in the 1-skeleton of K,
in the direction of increasing f:, until we reach a critical vertex x.
Similarly, we walk in the direction of decreasing f: until we reach
another critical vertex y. Observe that  and y are also nodes in the
Reeb graph, R;, and delimit the desired path. As described in Sec-
tion 4, this operation is instrumental in finding the connection of the
new arc in a birth event and for determining the after configuration
in most interchange events.

Initialization, sweep, and construction. We begin by constructing
the Jacobi curve as a collection of edges in K using the algorithm in
[12]. This provides the collection of birth-death points, which we
use to initialize the priority queue representation of time. We also
construct the Reeb graph at time zero from scratch, using the al-
gorithm in [7], which is similar to the forward-backward sweep al-
gorithm for computing Betti numbers in [10]. The latter algorithm
also detects when 1-cycles are created and destroyed, which is the
information we need to add the degree-2 nodes to the Reeb graph,
which is not part of the former algorithm. The last step in prepa-
ration for the sweep through time inserts the interchange events
that correspond to arcs in the Reeb graph into the priority queue.
Specifically, for each arc a in Ry, we get (z,y) = NODES(a),



v = SEGMENT(z), ¥/ = SEGMENT(y) and we insert the inter-
change returned by NEXTXING(~,~’) for time ¢ = 0 into the pri-
ority queue.

The sweep is now easy, repeatedly retrieving the next event,
updating the Reeb graph, and deleting and inserting interchange
events as arcs are removed and added. We think of the sequence as
the evolution of a single Reeb graph. Following Driscoll et al.[11],
we accumulate the changes to form a single data structure repre-
senting the entire evolution, which we refer to as the partially per-
sistent Reeb graph. We adhere to the general recipe to construct it,
using a constant number of data fields and pointers per node and
arc to store time information and keep track of the changes caused
by an update. In addition, we construct an array of access pointers
that can be used to retrieve the Reeb graph at any moment in time
proportional to its size.

Analysis. The running time of the algorithm can be expressed in
terms of a small number of parameters, which we now introduce:

N = number of simplices in K, the triangulation of the space-time
data;

n = upper bound on the number of simplices in a slice K; of K
E = number of birth-death and interchange events;
k = number of edges of the Jacobi curve.

Wehaven < N, k < N, and E < k?, assuming the triangulation
is fine enough to resolve the Jacobi curve as a disjoint collection
of simple cycles. For reasonable input data, the left side will be
significantly smaller than the right side in all three inequalities. To
construct the Jacobi curve, we compute the reduced Betti numbers
of the lower link of each edge in time O(¥¢), where ¢ is the size
of the link. The total size of all links is some constant times NV,
which implies a running time of O(N). The birth-death points
are inserted into the priority queue in constant time each. The ini-
tial Reeb graph is constructed in time O(na(n)), inserting the ini-
tial batch of interchange events in time O(n). The sweep iterates
through E events, each in time O(n) needed to determine the after
configuration of the event. In addition, we use time O(k) to move
the nodes of the Reeb graph along the chains of edges represent-
ing the segments of the Jacobi curve. In total, the running time is
O(N + En). We construct the partially persistent data structure
representing the evolution of the Reeb graph in the same time. The
size of that data structure is proportional to the size of the initial
Reeb graph plus the number of events, which is O(n + E).

An obvious place to improve the running time is to improve the
time needed to do a PATH operation. Is there a data structure that
can return (the endpoints of a) path in time O(logn)? If so then
the total running time would improve to O(N + E'log n), which is
perhaps optimal.

6. CONCLUSION

The main contribution of this paper is the classification of the com-
binatorial changes in the evolution of the Reeb graph of a generic
time-varying Morse function on S®. We establish a connection be-
tween the time-series of Reeb graphs and the Jacobi curve defined
by the time-varying function. Using this connection, we describe
an algorithm that maintains the Reeb graph for piecewise linear
data. Letting n be the upper bound on the number of simplices in
the triangulation of S3, this algorithm takes time O(n) per com-
binatorial change in the Reeb graph. While maintaining the Reeb
graph, we construct a partially persistent data structure of size pro-
portional to the initial Reeb graph plus the number of events that

represent the entire evolution. Given a moment in time, ¢, we can
use this data structure to retrieve the Reeb graph R: in time loga-
rithmic in the number of events plus linear in its size.

Both our case analysis of events and our algorithm are limited to
S® and to a function on S® that varies with time. It would be in-
teresting to extend the analysis and the algorithm to a time-varying
function on a general 3-manifold, for which the Reeb graph may
have loops. Beyond this extension, it would be interesting to gen-
eralize the analysis and the algorithm to a function f restricted to
the level sets of another function g defined on the same 4-manifold.
Additional problems can be formulated by increasing the number
of dimensions and the number of functions.
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K

U, 0,0, T
Lko,Lk_o
B

s, t
z,y
T, a
N,n, k
E

manifold, Euclidean space, sphere
Morse functions
segments of Jacobi curve

triangulation

vertices, simplices
link, lower link
reduced Betti number

level, time parameters

critical points

node, arc in Reeb graph

#edges of K, section, Jacobi curve
#events

Table 2: Notation for geometric concepts, sets, functions, vectors, variables.



