
Parallel Accelerated Isocontouring for Out-of-Core Visualization

C. L. Bajaj V. Pascucci D. Thompson X. Y. Zhang
Department of Computer Sciences and TICAM

University of Texas, Austin, TX 78733
http://www.ticam.utexas.edu/CCV

Abstract

In this paper we introduce a scheme for static analysis that
allows us to partition large geometric datasets at multiple
levels of granularity to achieve both load balancing in par-
allel computations and minimal access to secondary mem-
ory in out-of-core computations. The idea is illustrated and
fully exploited for the case of isosurface extraction, but ex-
tendible to a class of algorithms based on a small set of pa-
rameters and for which an appropriate static analysis can be
performed.

1 Introduction and Related Work

Given a Scalar Field,������� , defined over a� -dimensional
bounded volume mesh (�	��

�), we often visualize the
data by rendering a� ����� � -dimensional surface satisfy-
ing ��������� const. This visualization technique is popu-
larly known asisocontouring. In order to obtain a good
understanding of the volume data, isosurfaces of multiple
representative isovalues need to be computed. To compute
a single isosurface without preprocessing one needs to visit
all the cells of the input. However, if you are querying for
multiple isosurfaces, it pays to preprocess the data to avoid
visiting cells that don’t contain any part of the current query
isocontour. This approach has come to be known asaccel-
erated isocontouring.

Early work has predominantly focused on algorithms for
extracting a single isosurface from volume data [14]. The
same goal was addressed more recently with the particle-
based method [7]. Several algorithms have been devel-
oped to addressed the problem of accelerated isocontour-
ing [21, 10, 12, 19, 13, 20, 1], where the volumetric data
is preprocessed to allow for multiple fast queries. Pa-
pers [1, 5, 13] use interval, segment, or k-d trees to index
the cells in the scalar field. The advantage of the approach
in [1] lies in the fact the only a small set of “seed” cells is
indexed in the search structure. A set of seed cells is a set
of cells guaranteed to intersect every isolated portion of an
isosurface for any isovalue. The search tree structure stores
seed cells according to the range of values spanned by�������

in each cell. In this way, when an isovalue is given, the tree
returns efficiently seed cells that intersect the desired iso-
surface. Contour propagation is then used to generate the
entire isosurface from the seed cells. The complexity of this
algorithm is� ������������� �!� , where��� is the size of the seed
set and� is the number of cells intersecting the output iso-
contour. This seed cell algorithm is the basis of our parallel
accelerated isocontouring.

As the size of the input data increases, isocontouring al-
gorithms need to be executed out-of-core and/or on paral-
lel machines for both efficiency and data accessibility. An
I/O optimal implementation of the search tree was presented
in [3]. The method has been later improved with a bet-
ter empirical tradeoff for improving I/O speed [4]. Hansen
and Hinker describe parallel methods for isosurface genera-
tion on SIMD machines [11]. Ellsiepen describes a parallel
isosurfacing method for FEM data by distributing working
blocks to a number of connected workstations [9]. Shen,
Hansen, Livnat and Johnson give a sequential and paral-
lel algorithm called isosurfacing in span space with utmost
efficiency (ISSUE) [18]. Parker et al. present a parallel
isosurface rendering algorithm using ray tracing [17]. Our
approach parallelizes the accelerated isocontouring in both
the seed set generation and isosurface extraction phases for
multiple isocontour queries. A very important issue of par-
allel computation is load balancing [6] that can be achieved
mostly with two fundamental approaches: (i) static balanc-
ing, where the data is partitioned priori with criteria that
should guarantee load balancing at runtime [15], or (ii) dy-
namic balancing, where processors are given small chunks
of data as they become available [8]. The partitions can take
the shape of slices, shafts, or slabs [16].

Moreover, data can be so large that it cannot even be
loaded into the primary memories of a large parallel com-
puter. For example, the entire size of visible human female
cryogenic data is larger than�#"%$'& . For this case we intro-
duce a combined out-of-core/parallel computation scheme
that scales with the number of processors and main memory
available to take full advantage of the available hardware. In
order to minimize secondary memory accesses in multiple
queries we partition the data by its function value. For the
isocontour queries in a certain range, only cells intersecting
this range are read from secondary memory into primary
memory. With a good partition all cells of one range may fit
into the primary memory of parallel computer so that mul-
tiple queries within such range can be processed without
extra accesses to disk.

The data partitioning is based on a static analysis that
aims to maximize data coherency in functional space to
achieve an efficient tradeoff between (i) load balance in
parallel computations and (ii) minimal access to secondary
memory in out-of-core computations. We have imple-
mented our parallel, accelerated isocontouring algorithm for
multiple queries of large datasets on Cray T3E. Our ap-

0-7803-5901-1/99/$10.00 Copyright 1999 IEEE

97

work

px y
c b
a

d
x y

Figure 1: Staticanalysisdiagramof algorithm (onafixed
dataset) with respectto thevaryingparameter*
(horizontalaxis).Noticethattheoverall diagram
is thesumof thediagramcomputedfor eachcell
(+-,/.0,/1�,2�3,54#464).

proachhowevercanbegeneralizedto othervisualizational-
gorithms(e.g.multiple volumerendering)which have sim-
ilar algorithmiccharacteristics.

Therestof this paperis asfollows: Section2 detailsour
computationalframework for achieving load balancingin
parallelcomputationsandminimal disk accessfor out-of-
corecomputations.Section3 describesthestaticdataparti-
tioningandreorganizationspecializedfor thecaseof accel-
eratedisocontouringalgorithm. Section4 providesdetails
on our parallelimplementation.Section5 providesexperi-
mentalresults.

2 The Computational Framework

Considera dataset) andan algorithm (�)7,8* � that takes
asinput) anda parameter*94 We considertheproblemof
optimizingmultiple evaluationsof (�)7,8* � with a fixed)
anddifferentvaluesof *�4 That is we allow a preprocessing: �)7,/(� to producean evaluator (�; � * � that, for any *�,
producesthe sameoutputas (�)7,8* � but moreefficiently.
In the caseof isosurfaceextraction, * is the value of iso-
surfacequery, and (; � * � is the acceleratedisocontouring
algorithm. In particularwe concentrateon the casewhere
) is a meshthat is too largeto bestoredin themainmem-
ory of a singleprocessorcomputer. Henceonemajor op-
timization problemis to partition) so that it is possible
to achieve both (i) load balancingin parallelcomputations
and(ii) minimalaccessto secondarymemoryin out-of-core
computations.

For exampleweassumethat * is arealnumberdefinedin
therange < =�,/>@? andthat) is a collectionof smallelemen-
tary units calledcells. Our objective is to build a diagram
asin Figure1, by whichonecanestimatethecostof execu-
tion of thealgorithm (on thefixeddataset) for different
valuesof * . The analysisis performedat the level of sin-
glecellsof) sothat it is possibleto determinewhichcells
areinvolvedin theevaluationof (for a givenparameter* .
Thediagramof) is thesumof thediagramsof its cells. In
figurethediagramsof thecells +�,A.�,/10,/� areadded.

2.1 Load Balancing

Thestaticanalysisdescribedabove allows immediateeval-
uationof thequality of a datapartitioningschemein terms
of loadbalancingduringparallelcomputations.In fact the

ideal loadbalancingfor � processorswould beachieved if
theanalysishistogramof thedataassignedto eachproces-
soris samescaledversion(BC times)of theglobalhistogram.
Figure2 shows the ideal partitioning of) in the caseof
two-processorswhere the cells .�,/10,2� are assignedto the
first processorandthecell + is assignedto thesecondpro-
cessor(andhencenot summedon top of . and 1). In this
ideal datapartition, eachprocessordoesthe sameamount
of work for everyvalueof theparameter* .

Thefirst resulthereis thatthisanalysisallowsto evaluate
the quality of a datapartitioningschemeby comparingits
diagramwith theidealone.In ouralgorithmwewill usethe
idealdiagramto derive a datapartitioningthatbalancesthe
work load.

work

px y

work

px y

ONE PROCESSOR TWO PROCESSORS

work

p

a

x y

c b
a

d
x y

c b d
x y

Figure 2: Optimal datapartitioningfor load balancedpar-
allel computations(two processorscase).

2.2 Minimal Secondary Memory Access

As in the caseof parallelcomputationsonecandetermine
the diagramof an ideal data partitioning for out-of-core
computations.In order to minimize disk accessat execu-
tion of thealgorithm (onmultiple valuesof theparameter
* , onecanmake useof the coherenceof the parameter* .
It’ s ideal thatonly thecells relevant to theevaluationof (
onthecurrentvalueof * areloadedfrom secondarymemory
into primarymemory. Thereforewe reorganizethedataby
rangepartitionssuchthatwe loadonly thecells in onepar-
tition for querieswith in its range.Figure3 shows theideal
partitionfor thecaseof threesecondarymemoryblocks.

Again the ideal diagramcan be usedto determinethe
quality of any givenpartition. We precomputethediagram
to helptheconstructionof anactualpartitiontrying to min-
imize the differencefrom the ideal one. We will describe
how we do theactualpartition for the isosurfacecomputa-
tion in next section.

3 Accelerated Isocontouring Query
Processing

In this sectionwe demonstratethe ideasintroducedin the
previoussectionby applyingtheschemeto theaccelerated
isocontourqueryprocessingin which theparameter* is the
isovalue query. Similar specializationcould be done for
multipleviewpointvolumerendering(* wouldbethevector
of viewing parameters).

98

ONE BLOCK THREE BLOCKS

work

p
c b
a

d
x y

work

px y

work

p
d

x y

work

p
c b
a

x y

Figure 3: Optimal data partitioning for minimum disk ac-
cess in out-of-core computations (three disk-
blocks case).

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

N
um

. b
lo

ck
le

ts

Isovalue [bucket number]

Figure 4: Static analysis histogram for a real dataset (foot
of the visible human).

3.1 Static Analysis

The static analysis of isosurface extraction can be achieved
by computing as pre-processing thecontour spectrum[2].
The question here is to choose the appropriate signature
function that represents the actual computation load. Here
we consider the number of cells intersected with certain iso-
surfaces of value* . This is a piecewise constant function
that can be computed in linear time. Figure 4 shows the
histogram for a real dataset.

3.2 The Greedy Decomposition Algorithm

The basic assumption we make is that the size of the disk
blocks is much larger than the Blocklets, small sets of adja-
cent cells that we consider our atomic processing element.
Moreover we assume that the disk blocks are much smaller
than the main memory of each processor. This assumption
is satisfied by our target machine Cray T3E.

In our algorithm, the range partitioning of the data is per-
formed in a preprocessing stage and each partition is saved
in a separate file. We build the range partitions in a way
that makes the access of disk efficient. The load balancing

Blocklet

Data
Volume

Cell

Figure 5: A regular grid volumetric dataset, its cell and the
atomic processing element Blocklet.

of parallel computations is done using the unit of cell block
(collection of blocklets) at the loading time. It can also be
done at preprocessing stage if each processor has its own
secondary memory. So the actual data decomposition al-
gorithm can be described as a two-stage greedy scheme as
follows.

In the first stage we decide the range partitions accord-
ing to the total main memory and the contour spectrum as
shown in Figure 4. For the blocklets of a range partition, a
fixed number of blocklets are stored in each cell block that is
integral multiple of disk blocks. Blocklets of similar spec-
trum are distributed among different cell blocks. If multi-
ple choices are available one blocklet is chosen according
to spatial coherence to blocklets already stored in the cell
block. After this preprocessing stage the out-of-core de-
composition is achieved.

In the second stage we aim for load balancing of paral-
lel computation. On each processor a spectrum diagram is
maintained for the blocks currently assigned to the proces-
sor. One by one the cell blocks are selected and assigned
to the processor for which the spectrum has the most im-
provement with respect to the ideal case. Again if multiple
choices are available we try to keep in the same processor
blocks that are spatially coherent.

4 Implementation

In this section we describe some details of our implementa-
tion of parallel accelerated isocontouring on the Cray T3E.
The atomic unit of data that is handled at data decomposi-
tion is called ablocklet. A blocklet is a small rectangular
slab of cells and an associated offset into the original data
volume recording where the cells were taken from. Block-
lets will be collected intocell blocks(CBs), which are sim-
ply collections of blocklets stored on disk so that all the
information necessary to generate isosurfaces for the cells
is stored in one place (for fast disk access). The size of CB
is chosen to be an integral multiple of disk block size of the
machine.

Because large data sets may not always fit into main
memory, the range of function values will be partitioned
so that cells in the interval covered may all be loaded into
main memory at once. This is called arange partition(RP).
Range partitions allow for interactive isosurface visualiza-
tion in main memory when isovalues are limited to the in-
terval of values covered. As described in section 3, CBs
will be formed by adding blocklets that reduce the variance
of the resulting spectrum among cell blocks.

99

(a) (b) (c)

Figure 6: (a) An isosurface.(b) All theblockletsthatareloadedin memoryto computethe isosurface(two processors).(c)
Theblockletsprocessedby oneof theprocessors.

Becausethe sampling of �D���E� is regular, the ver-
ticesmay be indexed with a vectorof integer coordinates
<AF7G�,!F B ,�4#4649,HF � ? . A rangepartitioncontainscell blocks
which containblocklets. Rangepartitionshold all the cell
blocks necessaryto cover somesegmentof the rangeof�D���E� . Cell blocksaresizedto matchdisk blocksandfilled
with blockletsso that thespectrumof a cell block matches
that of the rangepartition. Blocklets will be storedwith
offsets, </F GG ,!F G B ,94I4649,HF

G� ? , from theglobalindices.This
vectoris usedto performthetransformfrom local to global
cell andvertex coordinates.

A triangularmatrix is constructedto help thedataparti-
tion,asshown in Figure7. Oneaxisof thematrixrepresents
the functionvalueover theentiredomainwhich is divided
into a specifiednumberof buckets. The secondaxis is the
numberof buckets that a blocklet spans. In this way, the
lowest function value and the numberof buckets spanned
becomecoordinateswith which a blocklet ID is storedin
the array. This array lets us createcell blocks that have
spectrumsimilar to the whole datasetby evenly distribut-
ing all of theblockletsin eachentryof thematrixacrossall
cell blocks. Furthermore,this matrix lets us quickly iden-
tify all of thecells that spana given rangeof the function.
Thismeansthatwemaydividethematrix into asetof range
partitions,eachof whichcanfit entirelyinto mainmemory.

Thenumberof bucketsthatpartition theentirefunction
valuerangeis setby thesmallestsegmentof therangethat
allows userinteraction. If the rangesegmentis too small,
only few querieswill fall into suchrange. The overhead
of dataduplication in different rangepartitionsmay out-
weightheperformanceimprovementfrom multiple isocon-
tourqueries.

The blockletsaresizedso that eachspansonly a small
portionof thetotal rangeof thedata.Thecell blocksshould
besizedsothattherearemuchmoreof themthanthereare
PEs. This is for betterpossibleload balancingamongthe
processors.Ideally, CBs would be sizedso that eachpro-
cessorobtainsthesamenumberof CBs.Cell blocksshould
containat leastasmany blockletsasthereareentriesin the
triangularhistogrammatrix,sothatif everyentryin thema-
trix hasmany blocklets,thecell block canhave a represen-
tativesample.In thecurrentimplementation,cell blocksare
sizedto be

�9J�KML5NOJ � . �5PRQ C�%S#TU� . J�K ,/. �5PRQ C �

a given range

All cells that span
a given bucket

All cells that span

Matrix of blocklet ID numbers

nu
m

be
r

of
 b

lo
ck

le
ts

isovalue

sp
an of b

lockl
et

[bucke
ts]

Figure 7: Thestoragestructurefor blockletIDs.

where � J9KHLVN9J is the numberof blockletsper cell block,
. �5P�Q C is the numberof bytesin a disk block, and . J�K is
the numberof bytesusedto storea blocklet. If � J�KML5NOJ
is lessthanthenumberof entriesin thehistogramtable,it
is doubleduntil this is no longertrue. This ensuresthatno
disk spaceis wastedandthata cell block canhold at least
oneblockletfrom eachentryin thehistogramtable.

During pre-processing,blockletsare read by scanning
throughthe data. As eachblocklet is read, its minimum
andmaximumvaluesaredetermined.From this, we find
thebottom-mostbucketof thehistogramtheblockletspans,
along with the total numberof buckets that it occupies.
Thesetwo valuesare usedas indicesto a position in the
triangularmatrix of blocklet IDs. Oncethis passhasbeen
completed,theappropriaterangepartitionscanbecreated.

Notethattheblockletsthatspanany givenisovaluemay
now bedeterminedbyvisiting eachmatrixentryhighlighted
in Figure 7. By increasingthe size of an initial partition
while keeping it fitting into main memory, we can cre-
aterangepartitionsthatallow the largestrangeof isovalue
queries.

Eachrangepartition containsa list of cell blocks that
spansomebucket of therange.Sincethenumberof block-

100

0 5 10 15 20 25 30 35Isovalue [bucket number] 0
5

10
15

20
25

30
35

Span [in buckets]

0
0.5

1
1.5

2
2.5

3

Num. blocklets

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

N
um

. b
lo

ck
le

tsW

Isovalue [bucket number]

(a) A two-dimensionalanalyticfunction.

0 5 10 15 20 25 30 35Isovalue [bucket number] 0
5

10
15

20
25

30
35

Span [in buckets]

0
20
40
60
80

100
120
140
160
180

Num. blocklets

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

N
um

. b
lo

ck
le

tsW

Isovalue [bucket number]

(b) Thefoot of thevisiblehumanmale.

Figure 8: Someexampletriangularmatricesandtheresul-
tanthistograms.

lets of a certainrangepartition is known, we cancompute
thenumberof cell blocksrequiredfor a given rangeparti-
tion. By equallydividing theblockletIDs storedateachen-
try of thetriangularhistogrammatrixamongall cell blocks,
we createbalancedcell blocks.

Someexamplesof numberof blockletsstoredin entries
of thetriangularmatrix areshown for trial datain Figure8.

After the preprocessingof thedata,we staticallyassign
cell blocks of a rangepartition to multiple processorsin
sucha way thatminimizesthe spectrumdifferenceamong
the processorsas discussedin section3. Eachprocessor
computesseedsetfor its own blockletsusingthe methods
describedin [1]. Basedon thecomputedseedsets,proces-
sorscan processmultiple isocontourqueriesin the range
usingtheacceleratedisocontouringalgorithm.

5 Experimental Results

We testedour algorithmon a Cray T3E of the TexasAd-
vancedComputingCenter(TACC).TheCrayT3E is a mul-
tiple instructionmultipledata(MIMD) machinewhichpro-
cessorsaretoroidally–connectedfor messagepassing.The
latency for messagepassingis approximately100clockcy-
cles. Although the time requiredfor one processingele-
ment(PE)to contactanotherPEmayvarydependingonthe
numberof hopsbetweenthe two PEs, the messagepass-
ing library (MPI) hidesthis distance,sothatdatacoherence
cannotmimic spatialcoherence(andthusminimizenetwork
traffic).

Anotherstrengthof thehardwareis the largeamountof
memoryavailable.Sinceeachprocessingelement(PE)has
128MB of mainmemory, thereis a total of up to 7.5GB of
memoryavailablein the largestconfiguration(with 60 ap-

plicationnodes).Oneobviousapplicationfor this machine
is processingof large dataset.However, largedatacanre-
quireevenmorespacethanthis, sowe mustallow for out-
of-corevisualization.Duringeachclockcycle,theCPUcan
execute2 floatingpoint operations.Becausefloatingpoint
operationsarethe strengthof the DEC Alpha it seemsra-
tional to implementanalgorithmthattakesreal,ratherthan
integral,scalarfields.

Figure6 shows the resultsof runningthecodeon a rel-
atively small scalarfield usedfor testing. Blocklets areXZY[XZY[X

vertices(\ Y \ Y \ cells) and thereare only
two cell blocks. Becauseof this, the numberof blocklets
in thesecondcell block is smaller. Oneaspectworth men-
tion is thatthespatialcoherenceof theblockletswherelarge
portionsof theblockletsin thesamecell blockareadjacent.
This alsoreducesthe numberof seedcells requiredin the
cell block. Figure9 shows an isosurfaceof thevisible hu-
manfoot whereeachcolor in thefinal renderinghighlights
thecontributionprovidedby eachprocessor.

Figure 10: Isosurfacewith isovalue117(14,360,774trian-
gles)of thetoppartof thevisiblehuman.

Our intermediatesizedatasetis the top part of the visi-
blehumanbody. Onelargeisosurfaceenclosingthebodyis
shown in Figure10. Figure13(a-b)shows theloadbalance
andthroughputfor 16,32and64 processorscomparedwith
theidealcaseof balance(dashedlines).While theloadbal-
ancestill needsimprovement,it is importantto notethatthe
maximumdeviationsfrom theidealbalancearedueto pro-
cessorsthatareunder-usedandthereis no high pick. This
correspondsto thehistogramsof eachrangepartitionshown
in Figure12 in thin solid linescomparedwith theidealhis-
togramdrawn in thick dashedline. Theconsequenceis that
thetotal time necessaryto computean isocontourdoesnot
deviate too much from the time of ideal load balancebe-
causeit is the time of the lastprocessorthat terminatesthe
computation.

The speedupchart in Figure14 shows the effect of the
combinationbetweenparallelandout-of-corecomputation.
Goingfrom 16PEto 32PEandfrom 32PEto 64PE,thecom-
putationtime is reducedby almosthalf becausewe have
doubledthenumberof processors.The32-processorrun is
slightly fasterthanalinearspeedup.Thiscouldhaveseveral

101

Figure 9: Isosurfaceof visible humanmale foot computedfrom the cryogenicimagedata. Color shows contribution of
differentprocessors.

causes;first, sincetheprogramis runasa batchjob, it must
competewith otherjobs for limited disk throughput.Also,
it maycompetewith itself for disk throughput.As proces-
sorswith fewer trianglesfinish contouring,they write their
vertices(maintainedin an AVL tree) to a file. This slows
down processorsstill writing facesout to disk. Thereis a
similar computationalexpensefor seedcells that doesnot
scalelinearlywith thenumberof processors.Runningwith
half thenumberof processorsdoesnot imply thatdoublethe
numberof seedcellswill berequiredbecausetherewill be
moreblockletsthatshareboundaries.Third, asthenumber
of processorsincreases,thenumberof cell blocksallocated
to eachprocessordecreasesandtheslight imbalancesin the
loaddo notaverageoutaswell. This increasesthevariance
of the outputtimes. Fourth, the numberof outputvertices
varieswith thenumberof processors.Althoughthenumber
of facesremainsthesame,whensmallnumbersof proces-
sorsareused,moreblockletsareonthesameprocessorand
shareoutput vertices. This meansfewer total verticesto
write thanlargenumbersof processorsbut alsomeansthat
moretime is requiredto insertthembecausethevertex tree
is larger. Finally, in addition to imbalancecausedby less
thanideally shapedhistogramsof cell blocks,someproces-
sorshave onemorecell block to processthanotherssince
thenumberof cell blocksis not an integral multiple of the
numberof processors.Whenthetotalnumberof cell blocks
per processoris low (as it is for high numbersof proces-
sors),theimbalancecansignificantlyimpactthecontouring
time.

The analysisfor the entiredatasetproducessimilar re-
sults. Figure15 shows a sequenceof rectanglesthatbound
theminimumanda maximumhistogramsof eachpartition
(therearetoo many partitionsto show eachhistogramasin
Figure12). Noticethatevenin thiscaselargepartitionstend
not to exceedtheidealaveragevalue(smallcircles).

We alsotestour algorithmon otherdatasets,suchasthe
femalect data. Portionof an isosurfaceis shown in Fig-
ure11,wheretrianglesaredisplayedwith differentcolor if
generatedby differentPEin Figure11(b).

6 Conclusion and Future Work

In this paperwe have introduceda schemefor staticanal-
ysis of large datasetsto addresssimultaneouslythe prob-
lemsof obtainingloadbalancein parallelcomputationsand
minimalsecondarymemoryaccessin out-of-corecomputa-
tions. We analyzedthehistogramof theentiredatasetand

(a) shadedisosurface(isovalue1550)

(b) isosurfacecoloredby PEs(isovalue1550)

Figure 11: Isosurfaceof femalect dataat isovalue 1550.
(a) Shadedisosurface(b) Differentcoloring of
the surfacecorrespondingto output generated
by differentPE.

102

10

100

1000

0 10 20 30 40 50 60 70

C
om

pu
ta

tio
n

tim
e

[s
ec

]

Processor Number

16 PEs
32 PEs
64 PEs

Averages

(a) LoadBalancing(isovalue117)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t [

tr
ia

ng
le

s/
se

c]

Processor Number

16 PEs
32 PEs
64 PEs

(b) Throughput(isovalues117)

Figure 13: (a) Experimentalloadbalancingfor a singleisosurfacecomputation(isovalue117)with 8, 16 and32 processors
(solid lines) comparedwith the ideal cases(dashedlines). (b) Throughput(numberof trianglescomputedper
second)for multiple isosurfaceextractions(isovalues117).

0

2000

4000

6000

8000

10000

12000

0 8 16 24 32 41 49 57 65 74 82 90 98 10
6

11
5

12
3

13
1

13
9

14
8

15
6

16
4

17
2

18
0

18
9

19
7

20
5

21
3

22
2

23
0

23
8

24
6

25
5

Isovalue

B
lo

ck
s

A
llo

ca
te

d

Figure 12: Histogramsof the rangepartitionsfor the top
partof thevisiblehuman(solid thin lines)com-
paredwith theidealcase(dashedthick line).

Figure 14: Speedupof the isosurfaceextraction (isovalue
117)for 16,32 and64processors.Thespeedup
is dueboth to the increasednumberof proces-
sorsandto thereducedrateof I/O.

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

0 5000 1000015000200002500030000350004000045000500005500060000
Isovalue

Average/Std. Dev

Min/Max
N

um
be

r
of

 b
lo

ck
le

ts
 a

llo
ca

te
d

to
 e

ac
h

ce
ll

bl
oc

k

Histogram bucket

Range partition
for reported isosurfaces

Figure 15: Envelopeof the histogramsof the rangeparti-
tions for the entire visible human. The ideal
caseis markedby thesmallcircles.

constructcell blocksthathaveroughlythesamehistograms
(scaledby thenumberof cell blocksin thepartition)across
all isovaluesin a given range.Even if the entiredatasetis
too largeto fit in mainmemory, onerangepartitionbuilt in
this way maybesmallenough.If evena singlerangeparti-
tion is largerthanthemainmemory, thenits cell blockswill
besweptthrough,loadingasmany aspossibleatonce.This
avoidsloadingthecell blocksthatbelongto rangepartitions
thatdo notcontributeto thecomputationof thecurrentiso-
surface. We plan to improve this traversalby storing the
cells in blocksof similar values,with cell blocksordered
by increasingvalue.In this manner, asfew cellsaspossible
would be traversedwhena rangecould not be loadedinto
primarymemory.

Whenthebucket sizefor thehistogramis smallandthe
data is still too large to fit in main memory, we can no
longerbe concernedwith interactive exploration; our sole
taskbecomesextractingan isosurfaceasefficiently aspos-
sible.Notethatwhile thismaybeslow, it is still accelerated
sinceonlycellsin anarrow rangewill beloaded.Also,since
theproblemis I/O boundin theout-of-corecase,wecanim-
prove theperformancesignificantlyif thePEscanperform
I/O in parallel.

Acknowledgments: This researchis supportedin part by

103

grantsfrom NSF-CCR-9732306,NSF-KDI-DMS-9873326,
DOE-ASCI-BD-485,andNASA-NCC 2-5276.

References

[1] BAJAJ, C., PASCUCCI , V., AND SCHIKORE, D. Fast
Isocontouringfor ImprovedInteractivity. In Proceed-
ingsof 1996SymposiumonVolumeVisualization(San
Francisco,CA, 1996),pp.39–46.

[2] BAJAJ, C., PASCUCCI , V., AND SCHIKORE, D. The
contourspectrum. In Proceedingsof the 1997IEEE
Visualization Conference (October1997), pp. 167–
173.

[3] CHIANG, Y., AND SILVA , C. T. I/O optimal isosur-
faceextraction.In IEEEVisualization9́7 (Nov. 1997),
R. YagelandH. Hagen,Eds.,IEEE,pp.293–300.

[4] CHIANG, Y.-J., SILVA , C. T., AND SCHROEDER,
W. J. Interactive out-of-core isosurface extraction
(color plate p. 530). In Proceedingsof the 9th An-
nualIEEEConferenceonVisualization(VIS-98)(New
York, Oct.18–231998),ACM Press,pp.167–174.

[5] CIGNONI , P., MARINO, P., MONTANI , C., PUPPO,
E., AND SCOPIGNO, R. Speedingup isosurfaceex-
tractionusinginterval trees.IEEETransactionsonVi-
sualizationandComputerGraphics3, 2 (1997),158–
170.

[6] CROCKETT, T. Parallelrendering.Tech.rep.,ICASE,
1995.

[7] CROSSNO, P., AND ANGEL , E. Isosurfaceextraction
usingparticlesystems.In Visualization’97 Proceed-
ings (Phoenix,AZ, October19–241997), R. Yagel
andH. Hagen,Eds.,pp.495–498.

[8] ELLSIEPEN, P. Parallel isosurfacingin largeunstruc-
tureddatasets.In Proceedingsof theFifth Eurograph-
ics Workshopon Visualization in ScientificComput-
ing (1994),M. Gobel,H. Muller, andB. Urban,Eds.,
Springer-Verlag,pp.9–23.

[9] ELLSIEPEN, P. Parallel isosurfacing in large un-
structeddatasets.In Visualizationin ScientificCom-
puting(1995),Springer-Verlag,pp.9–23.

[10] GALLAGHER, R. S. Span filtering: An efficient
schemefor volume visualizationof large finite ele-
mentmodels. In Visualization’91 Proceedings(Oct.
1991),G.M. NielsonandL. Rosenblum,Eds.,pp.68–
75.

[11] HANSEN, C., AND HINKER, P. Massively parallel
isosurfaceextraction.In Visualization’92 (September
1992).

[12] ITOH, T., AND KOYAMADA , K. Isosurfacegener-
ation by using extrema graphs. In Proceedingsof
Visualization ’94 (Washington,DC, October17–21,
1994) (Oct. 1994), D. Bergeron and A. Kaufman,
Eds.,IEEE ComputerSociety, IEEE ComputerSoci-
etyPress,pp.77–83.

[13] L IVNAT, Y., SHEN, H., AND JOHNSON, C. A near
optimal isosurface extraction algorithm for unstruc-
turedgrids. IEEE Transactionson Visualizationand
ComputerGraphics2, 1 (1996),73–84.

[14] LORENSEN, W. E., AND CL INE, H. E. Marching
cubes:A high resolition3dsurfaceconstructionalgo-
rithm. ComputerGraphics21 (1987),163–169.SIG-
GRAPH’87 Proceedings, M. C. Stone,ed.

[15] M IGUET, S., AND NICOD, J.-M. A load-balanced
parallel implementationof the marching-cubesalgo-
rithm. Tech.Rep.95-24,EcoleNormaleSuṕerieure
deLyon,October3 1995.

[16] NEUMANN, U. Comunication costs for paral-
lel volume-renderingapplications. IEEE Computer
GraphicsandApplications(July1994),49–58.

[17] PARKER, S., SHIRLEY, P., L IVNAT, Y., HANSEN,
C., AND SLOAN, P. Interactive ray tracingfor isosur-
facerendering.In Visualization’98 (October1998).

[18] SHEN, H., HANSEN, C., L IVNAT, Y., AND JOHN-
SON, C. Isosurfacingin spanspacewith utmosteffi-
ciency (issue). In Visualization’96 (1996),pp. 287–
294.

[19] SHEN, H., AND JOHNSON, C. Sweepingsimplices:
A fast iso-surface extraction algorithm for unstruc-
tured grids. In Visualization ’95 Proceedings(Oct.
1995), G. M. Nielson and D. Silver, Eds.,pp. 143–
150.

[20] VAN KREVELD, M. Efficient methodsfor isolineex-
tractionfrom a digital elevationmodelbasedon trian-
gulatedirregular networks. To appear, International
Journalof Geographical InformationSystems(1996).
Also appearedasTechnicalReportUU-CS-1994-21,
Universityof Utrecht,theNetherlands.

[21] WILHELMS, J., AND VAN GELDER, A. Octreesfor
fasterisosurface generation. ACM Transactionson
Graphics11, 3 (1992),201–227.

104

