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Abstract in each cell. In this way, when an isovalue is given, the tree
returns efficiently seed cells that intersect the desired iso-
In this paper we introduce a scheme for static analysis that surface. Contour propagation is then used to generate the
allows us to partition large geometric datasets at multiple entire isosurface from the seed cells. The complexity of this
levels of granularity to achieve both load balancing in par- algorithm isO(log n’ + k), wheren’ is the size of the seed
allel computations and minimal access to secondary mem- set andk is the number of cells intersecting the output iso-
ory in out-of-core computations. The idea is illustrated and contour. This seed cell algorithm is the basis of our parallel
fully exploited for the case of isosurface extraction, but ex- accelerated isocontouring.
tendible to a class of algorithms based on a small set of pa-  As the size of the input data increases, isocontouring al-
rameters and for which an appropriate static analysis can be gorithms need to be executed out-of-core and/or on paral-
performed. lel machines for both efficiency and data accessibility. An
1/0 optimal implementation of the search tree was presented
in [3]. The method has been later improved with a bet-

1 Introduction and Related Work ter empirical tradeoff for improving 1/O speed [4]. Hansen
and Hinker describe parallel methods for isosurface genera-
Given a Scalar Fieldw(x), defined over al-dimensional tion on SIMD machines [11]. Ellsiepen describes a parallel

bounded volume mesh(e R?), we often visualize the isosurfacing method for FEM data by distributing working
data by rendering &d — 1)-dimensional surface satisfy- blocks to a number of connected workstations [9]. Shen,
ing w(x) =const This visualization technique is popu- Hansen, Livnat and Johnson give a sequential and paral-
larly known asisocontouring In order to obtain a good lel algorithm called isosurfacing in span space with utmost
understanding of the volume data, isosurfaces of multiple efficiency (ISSUE) [18]. Parker et al. present a parallel
representative isovalues need to be computed. To computeisosurface rendering algorithm using ray tracing [17]. Our
a single isosurface without preprocessing one needs to visit approach parallelizes the accelerated isocontouring in both
all the cells of the input. However, if you are querying for the seed set generation and isosurface extraction phases for
multiple isosurfaces, it pays to preprocess the data to avoid multiple isocontour queries. A very important issue of par-
visiting cells that don't contain any part of the current query  allel computation is load balancing [6] that can be achieved
isocontour. This approach has come to be knowacs!- mostly with two fundamental approaches: (i) static balanc-
erated isocontouring ing, where the data is partitioned priori with criteria that
Early work has predominantly focused on algorithms for - should guarantee load balancing at runtime [15], or (ii) dy-
extracting a single isosurface from volume data [14]. The hamic balancing, where processors are given small chunks
same goal was addressed more recently with the particle- Of data as they become available [8]. The partitions can take
based method [7]. Several algorithms have been devel- the shape of slices, shafts, or slabs [16].
oped to addressed the problem of accelerated isocontour- Moreover, data can be so large that it cannot even be
ing [21, 10, 12, 19, 13, 20, 1], where the volumetric data loaded into the primary memories of a large parallel com-
is preprocessed to allow for multiple fast queries. Pa- puter. For example, the entire size of visible human female
pers [1, 5, 13] use interval, segment, or k-d trees to index cryogenic data is larger tha8G B. For this case we intro-
the cells in the scalar field. The advantage of the approach duce a combined out-of-core/parallel computation scheme
in [1] lies in the fact the only a small set of “seed” cells is that scales with the number of processors and main memory
indexed in the search structure. A set of seed cells is a set available to take full advantage of the available hardware. In
of cells guaranteed to intersect every isolated portion of an order to minimize secondary memory accesses in multiple
isosurface for any isovalue. The search tree structure storesqueries we partition the data by its function value. For the
seed cells according to the range of values spannedRYy isocontour queries in a certain range, only cells intersecting
this range are read from secondary memory into primary
memory. With a good partition all cells of one range may fit
0-7803-5901-1/99/$10.00 Copyright 1999 IEEE into the primary memory of parallel computer so that mul-
tiple queries within such range can be processed without
extra accesses to disk.

The data partitioning is based on a static analysis that
aims to maximize data coherency in functional space to
achieve an efficient tradeoff between (i) load balance in
parallel computations and (ii) minimal access to secondary
memory in out-of-core computations. We have imple-
mented our parallel, accelerated isocontouring algorithm for
multiple queries of large datasets on Cray T3E. Our ap-

97



work

b | d ]

¢
X y p

Figure 1. Staticanalysisdiagramof algorithm.4 onafixed
datasetD with respecto thevaryingparametep
(horizontalaxis). Noticethatthe overall diagram
is the sumof thediagramcomputedor eachcell
(a,b,e,d,...).

proachhowever canbegeneralizedo othervisualizational-
gorithms(e.g. multiple volumerenderingwhich have sim-
ilar algorithmiccharacteristics.

Therestof this paperis asfollows: Section2 detailsour
computationafframewvork for achievzing load balancingin
parallelcomputationsand minimal disk accesdor out-of-
corecomputationsSection3 describeshe staticdataparti-
tioning andreoganizationspecializedor the caseof accel-
eratedisocontouringalgorithm. Section4 providesdetails
on our parallelimplementation.Section5 providesexperi-
mentalresults.

2 The Computational Framework

Considera datasetD andan algorithm A(D, p) thattakes
asinput D anda parametep. We considerthe problemof
optimizing multiple evaluationsof A(D, p) with afixed D
anddifferentvaluesof p. Thatis we allow a preprocessing
P(D, A) to producean evaluator A” (p) that, for ary p,
produceghe sameoutputas.A(D, p) but moreefficiently.
In the caseof isosurfice extraction, p is the value of iso-
surfacequery and AP (p) is the acceleratedsocontouring
algorithm. In particularwe concentraten the casewhere
D is ameshthatis too largeto be storedin the mainmem-
ory of a single processorcomputer Henceone major op-
timization problemis to partition D sothatit is possible
to achieve both (i) load balancingin parallelcomputations
and(ii) minimalaccess$o secondarynemoryin out-of-core
computations.

For examplewe assumehatp is arealnumberdefinedn
therange[z, y] andthat D is a collectionof smallelemen-
tary units called cells. Our objective is to build a diagram
asin Figurel, by which onecanestimatethe costof execu-
tion of the algorithm A on thefixed datasetD for different
valuesof p. The analysisis performedat the level of sin-
glecellsof D sothatit is possibleto determinewhich cells
areinvolvedin the evaluationof A for a givenparametep.
Thediagramof D is the sumof the diagramsof its cells. In
figurethediagramof thecellsa, b, ¢, d areadded.

2.1 Load Balancing

The staticanalysisdescribedabove allows immediateeval-
uationof the quality of a datapartitioningschemen terms
of load balancingduring parallelcomputations.In factthe
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idealload balancingfor k processorsvould be achieved if
the analysishistogramof the dataassignedo eachproces-
soris samescaled/ersion(% times)of theglobalhistogram.
Figure 2 shaws the ideal partitioning of D in the caseof
two-processorsvherethe cells b, ¢, d are assignedo the
first processoandthecell a is assignedo the secondpro-
cessor(andhencenot summedon top of b andc). In this
ideal datapartition, eachprocessodoesthe sameamount
of work for every valueof theparametep.

Thefirst resulthereis thatthis analysisallowsto evaluate
the quality of a datapartitioningschemeby comparingits
diagramwith theidealone.In ouralgorithmwe will usethe
idealdiagramto derive a datapartitioningthatbalanceghe
work load.

Y

TWO PROCESSORS

ONE PROCESSOR

Figure 2: Optimal datapartitioning for load balancedpar
allel computationgtwo processorsase).

2.2 Minimal Secondary Memory Access

As in the caseof parallelcomputationsone candetermine
the diagramof an ideal data partitioning for out-of-core
computations.In orderto minimize disk accessat execu-
tion of thealgorithm.A on multiple valuesof the parameter
p, onecanmake useof the coherenceof the parametep.
It's ideal that only the cells relevant to the evaluationof A
onthecurrentvalueof p areloadedfrom secondarynemory
into primary memory Thereforewe reoiganizethe databy
rangepartitionssuchthatwe load only the cellsin onepar
tition for querieswith in its range.Figure3 shavs theideal
partitionfor the caseof threesecondarynemoryblocks.

Again the ideal diagramcan be usedto determinethe
quality of ary given partition. We precomputehe diagram
to helptheconstructiorof anactualpartitiontrying to min-
imize the differencefrom the ideal one. We will describe
how we do the actualpartition for the isosuricecomputa-
tion in next section.

3 Accelerated Isocontouring Query
Processing

In this sectionwe demonstratéhe ideasintroducedin the
previous sectionby applyingthe schemeto the accelerated
isocontourqueryprocessingn whichtheparametep is the
isovalue query Similar specializationcould be done for
multiple viewpointvolumerenderingp would bethevector
of viewing parameters).
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f\/ Figure5: A regular grid volumetric dataset, its cell and the
: : atomic processing element Blocklet.

T of parallel computations is done using the unit of cell block
THREE BLOCKS (collection of blocklets) at the loading time. It can also be
done at preprocessing stage if each processor has its own
Figure 3: Optimal data partitioning for minimum disk ac- secondary memory. So the actual data decomposition al-
cess in out-of-core computations (three disk- gorithm can be described as a two-stage greedy scheme as
blocks case). follows.
In the first stage we decide the range partitions accord-
ing to the total main memory and the contour spectrum as
700 |- shown in Figure 4. For the blocklets of a range patrtition, a
fixed number of blocklets are stored in each cell block that is
integral multiple of disk blocks. Blocklets of similar spec-
500 |- trum are distributed among different cell blocks. If multi-
ple choices are available one blocklet is chosen according
to spatial coherence to blocklets already stored in the cell
00l block. After this preprocessing stage the out-of-core de-
composition is achieved.
In the second stage we aim for load balancing of paral-

ONE BLOCK

600 |-

Num. blocklets

100|- lel computation. On each processor a spectrum diagram is
‘ ‘ ‘ ‘ ‘ : ; ‘ maintained for the blocks currently assigned to the proces-

diy 5 10 15 20 25 30 35 sor. One by one the cell blocks are selected and assigned
Isovalue [bucket number] to the processor for which the spectrum has the most im-

provement with respect to the ideal case. Again if multiple
choices are available we try to keep in the same processor
blocks that are spatially coherent.

Figure4: Static analysis histogram for a real dataset (foot
of the visible human).

3.1 Static Analysis 4 Implementation

The static analysis of isosurface extraction can be achieved
by computing as pre-processing tbentour spectrunj2].
The question here is to choose the appropriate signature
function that represents the actual computation load. Here
we consider the number of cells intersected with certain iso- lab of cell d iated offset into the original dat
surfaces of valug. This is a piecewise constant function se} o Cells and an associatea ofiset into the original data
that can be computed in linear time. Figure 4 shows the volume recording wh_ere the cells were take_n from. BlOCk'
histogram for a real dataset. lets will be_ collected intaell bIocks(CBs),_ which are sim-
ply collections of blocklets stored on disk so that all the
information necessary to generate isosurfaces for the cells
3.2 The Greedy Decomposition Algorithm !s stored in one pla_ce (for fast o_Iisk acce_:ss). The s_ize of CB
is chosen to be an integral multiple of disk block size of the
The basic assumption we make is that the size of the disk machine.
blocks is much larger than the Blocklets, small sets of adja-  Because large data sets may not always fit into main
cent cells that we consider our atomic processing element. memory, the range of function values will be partitioned
Moreover we assume that the disk blocks are much smaller so that cells in the interval covered may all be loaded into
than the main memory of each processor. This assumption main memory at once. This is calledange partition(RP).
is satisfied by our target machine Cray T3E. Range partitions allow for interactive isosurface visualiza-
In our algorithm, the range partitioning of the data is per- tion in main memory when isovalues are limited to the in-
formed in a preprocessing stage and each partition is savedterval of values covered. As described in section 3, CBs
in a separate file. We build the range partitions in a way will be formed by adding blocklets that reduce the variance
that makes the access of disk efficient. The load balancing of the resulting spectrum among cell blocks.

In this section we describe some details of our implementa-
tion of parallel accelerated isocontouring on the Cray T3E.
The atomic unit of data that is handled at data decomposi-
tion is called ablocklet A blocklet is a small rectangular
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Figure6: (a) An isosurfice. (b) All the blockletsthatareloadedin memoryto computethe isosurfice(two processors)(c)

Theblockletsprocessethy oneof the processors.

Becausethe sampling of w(x) is regular, the ver
tices may be indexed with a vector of integer coordinates
[mo, m1, ..., mg]. Arangepartitioncontainscell blocks
which containblocklets. Rangepartitionshold all the cell
blocks necessaryto cover somesegmentof the rangeof
w(x). Cell blocksaresizedto matchdisk blocksandfilled
with blockletsso thatthe spectrumof a cell block matches
that of the rangepartition. Blocklets will be storedwith
offsets,[m3, m?, ..., m], from theglobalindices. This
vectoris usedto performthetransformfrom local to global
cell andvertex coordinates.

A triangularmatrix is constructedo help the dataparti-
tion, asshavn in Figure7. Oneaxisof thematrixrepresents
the function value over the entiredomainwhich is divided
into a specifiednumberof buckets The secondaxisis the
numberof buckets that a blocklet spans. In this way, the
lowest function value and the numberof buckets spanned
becomecoordinatesvith which a blocklet ID is storedin
the array This array lets us createcell blocks that have
spectrumsimilar to the whole datasetby evenly distribut-
ing all of theblockletsin eachentry of thematrix acrossall
cell blocks. Furthermorethis matrix lets us quickly iden-
tify all of the cells that spana given rangeof the function.
Thismeanghatwe maydivide thematrixinto asetof range
partitions,eachof which canfit entirelyinto mainmemory

The numberof bucketsthat partition the entire function
valuerangeis setby the smallestsggmentof the rangethat
allows userinteraction. If the rangesegmentis too small,
only few querieswill fall into suchrange. The overhead
of dataduplicationin differentrange partitions may out-
weighthe performancemprovementfrom multiple isocon-
tour queries.

The blockletsare sizedso that eachspansonly a small
portionof thetotal rangeof thedata.Thecell blocksshould
be sizedsothattherearemuchmoreof themthanthereare
PEs. This is for betterpossibleload balancingamongthe
processors.ldeally, CBswould be sizedso that eachpro-
cessoobtainsthe samenumberof CBs. Cell blocksshould
containatleastasmary blockletsasthereareentriesin the
triangularhistogrammatrix, sothatif every entryin thema-
trix hasmary blocklets,the cell block canhave arepresen-
tative sample.In thecurrentimplementationgell blocksare
sizedto be

S baisk
/e ged (b, baisk)

100

Matrix of blocklet ID numbers

number of blocklets

Al cells that span&/

a given bucket

All cells that span
a given range

Figure 7. Thestoragestructurefor blockletIDs.

wherenpr,cp is the numberof blockletsper cell block,
baisk is the numberof bytesin a disk block, andbgsr, is

the numberof bytesusedto storea blocklet. If ngr,cB

is lessthanthe numberof entriesin the histogramtable, it

is doubleduntil this is nolongertrue. This ensureghatno
disk spaceis wastedandthata cell block canhold at least
oneblockletfrom eachentryin the histograntable.

During pre-processingblocklets are read by scanning
throughthe data. As eachblockletis read,its minimum
and maximumvaluesare determined. From this, we find
thebottom-mosbucket of the histograntheblockletspans,
along with the total numberof buckets that it occupies.
Thesetwo valuesare usedas indicesto a positionin the
triangularmatrix of blockletIDs. Oncethis passhasbeen
completedthe appropriataangepartitionscanbe created.

Notethatthe blockletsthatspanary givenisavaluemay
now bedeterminedy visiting eachmatrixentryhighlighted
in Figure 7. By increasingthe size of aninitial partition
while keepingit fitting into main memory we can cre-
aterangepartitionsthatallow the largestrangeof isovalue
queries.

Eachrangepartition containsa list of cell blocks that
spansomebucket of therange.Sincethe numberof block-
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plicationnodes).Oneolvious applicationfor this machine
is processingf large dataset.However, large datacanre-
quire even more spacethanthis, sowe mustallow for out-
of-corevisualization.Duringeachclock cycle,the CPUcan
execute2 floating point operations.Becausdloating point
operationsare the strengthof the DEC Alpha it seemga-
tionalto implementanalgorithmthattakesreal,ratherthan
integral, scalarfields.
Figure 6 shavs the resultsof runningthe codeon arel-
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(a) A two-dimensionahnalyticfunction.
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= atively small scalarfield usedfor testing. Blocklets are
4 x 4 x 4 vertices(3 x 3 x 3 cells) andthereare only

two cell blocks. Becauseof this, the numberof blocklets
in the seconctell block is smaller Oneaspectvorth men-
tionis thatthespatialcoherencef theblockletswherelarge

portionsof theblockletsin thesamecell block areadjacent.
This alsoreduceghe numberof seedcells requiredin the

cell block. Figure9 shawvs anisosurficeof the visible hu-

manfoot whereeachcolor in the final renderinghighlights
the contribution provided by eachprocessor

‘%

Isovalue [bucket number]

(b) Thefoot of thevisible humanmale.

Figure 8: Someexampletriangularmatricesandthe resul-
tanthistograms.

lets of a certainrangepartitionis knowvn, we cancompute
the numberof cell blocksrequiredfor a given rangeparti-
tion. By equallydividing the blockletIDs storedateachen-
try of thetriangularhistogranmatrixamongall cell blocks,
we createbalancedtell blocks.

Someexamplesof numberof blockletsstoredin entries
of thetriangularmatrix areshavn for trial datain Figure8.

After the preprocessingf the data,we staticallyassign
cell blocks of a rangepartition to multiple processorsn
suchaway that minimizesthe spectrumdifferenceamong
the processorsas discussedn section3. Eachprocessor
computesseedsetfor its own blockletsusingthe methods
describedn [1]. Basedon the computedseedsets,proces-
sorscan processmultiple isocontourqueriesin the range
usingthe accelerate@socontouringalgorithm.

5 Experimental Results

We testedour algorithmon a Cray T3E of the Texas Ad-
vancedComputingCenter(RCC). The Cray T3E is amul-
tiple instructionmultiple data(MIMD) machinewhich pro-
cessorsaretoroidally—connectedor messaggassing.The
lateng for messag@assings approximatelyl00clock cy-
cles. Although the time requiredfor one processingele-
ment(PE)to contactanothelPEmayvary dependingnthe
numberof hopsbetweenthe two PEs,the messagepass-
ing library (MPI) hidesthis distancesothatdatacoherence
cannotmimic spatialcoherencéandthusminimizenetwork
traffic).

Anotherstrengthof the hardwareis the large amountof
memoryavailable. SinceeachprocessinglementPE) has
128MB of mainmemory thereis atotal of upto 7.5 GB of
memoryavailablein the largestconfiguration(with 60 ap-
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Figure 10: Isosuracewith isovalue117(14,360,774rian-
gles)of thetop partof thevisible human.

Our intermediatesize dataseis the top part of the visi-
ble humanbody Onelargeisosurficeenclosingthebodyis
shawn in Figure 10. Figure13(a-b)shavs theload balance
andthroughputfor 16,32and64 processorsomparedwith
theidealcaseof balancgdashedines). While theloadbal-
ancestill needsmprovement it is importantto notethatthe
maximumdeviationsfrom theideal balancearedueto pro-
cessorghatareunderusedandthereis no high pick. This
correspond#o thehistogram®f eachrangepartitionshavn
in Figure12in thin solid linescomparedvith theideal his-
togramdrawn in thick dashedine. The consequencss that
thetotal time necessaryo computeanisocontourdoesnot
deviate too muchfrom the time of ideal load balancebe-
causet is thetime of the lastprocessothatterminateshe
computation.

The speedupchartin Figure 14 shavs the effect of the
combinatiorbetweerparallelandout-of-corecomputation.
Goingfrom 16PEto 32PEandfrom 32PEto 64PE thecom-
putationtime is reducedby almosthalf becausene have
doubledthe numberof processorsThe 32-processorunis
slightly fasterthanalinearspeedupThis couldhave several



Figure 9: Isosurfice of visible humanmale foot computedfrom the cryogenicimagedata. Color shavs contritution of

differentprocessors.

causesfirst, sincethe programis run asa batchjob, it must
competewith otherjobs for limited disk throughput.Also,

it may competewith itself for disk throughput.As proces-
sorswith fewer trianglesfinish contouring they write their
vertices(maintainedin an AVL tree)to afile. This slows

down processorstill writing facesout to disk. Thereis a
similar computationakxpensefor seedcells that doesnot
scalelinearly with the numberof processorsRunningwith

halfthenumberof processordoesnotimply thatdoublethe
numberof seedcellswill berequiredbecauseherewill be
moreblockletsthatshareboundariesThird, asthe number
of processorincreasesthe numberof cell blocksallocated
to eachprocessodecreaseandtheslightimbalancesn the
loaddo notaverageoutaswell. Thisincreaseshevariance
of the outputtimes. Fourth, the numberof outputvertices
varieswith thenumberof processorsAlthoughthe number
of facesremainsthe same whensmallnumbersof proces-
sorsareused moreblockletsareonthe sameprocessoand
shareoutput vertices. This meansfewer total verticesto

write thanlarge numbersof processorsut alsomeanshat
moretime is requiredto insertthembecausehe vertex tree
is larger Finally, in additionto imbalancecausedby less
thanideally shapedistogramsf cell blocks,someproces-
sorshave onemorecell block to processhanotherssince
the numberof cell blocksis not anintegral multiple of the
numberof processorsWhenthetotal numberof cell blocks
per processoiis low (asit is for high numbersof proces-
sors) theimbalancecansignificantlyimpactthe contouring
time.

The analysisfor the entire datasetproducessimilar re-
sults. Figure 15 shavs a sequencef rectangleghatbound
the minimum anda maximumhistogramsof eachpartition
(therearetoo mary partitionsto shav eachhistogramasin
Figurel2). Noticethatevenin this casdargepartitionstend
notto exceedtheideal averagevalue(smallcircles).

We alsotestour algorithmon otherdatasetssuchasthe
femalect data. Portion of anisosurfceis shovn in Fig-
ure 11, wheretrianglesaredisplayedwith differentcolor if
generatedby differentPEin Figure11(b).

6 Conclusion and Future Work

In this paperwe have introduceda schemefor staticanal-
ysis of large datasetdo addresssimultaneouslythe prob-
lemsof obtainingloadbalancen parallelcomputationgnd
minimal secondarynemoryaccess$n out-of-corecomputa-
tions. We analyzedthe histogramof the entire datasetand
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(b) isosurficecoloredby PEs(isovalue 1550)

Figure 11: Isosurfice of femalect dataat isovalue 1550.
(a) Shadedsosurace (b) Differentcoloring of
the surface correspondingo output generated
by differentPE.
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Figure 14: Speedupof the isosurfice extraction (isovalue
117)for 16,32 and64 processorsThe speedup
is due both to the increasechumberof proces-
sorsandto thereducedateof I/O.
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Figure 15: Envelope of the histogramsof the rangeparti-
tions for the entire visible human. The ideal
caseis marked by thesmallcircles.

constructcell blocksthathave roughlythe samehistograms
(scaledby the numberof cell blocksin the partition) across
all isovaluesin a givenrange. Evenif the entiredataseis
too largeto fit in mainmemory onerangepartition built in
this way maybesmallenough.If evenasinglerangeparti-
tion is largerthanthe mainmemory thenits cell blockswill
besweptthrough loadingasmary aspossibleatonce.This
avoidsloadingthecell blocksthatbelongto rangepartitions
thatdo not contritute to the computatiorof the currentiso-
surface. We plan to improve this traversalby storing the
cellsin blocks of similar values,with cell blocks ordered
by increasingvalue. In this mannerasfew cellsaspossible
would be traversedwhen a rangecould not be loadedinto
primarymemory

Whenthe bucket sizefor the histogramis smallandthe
datais still too large to fit in main memory we can no
longerbe concernedvith interactize exploration; our sole
taskbecomesxtractinganisosurficeasefficiently aspos-
sible. Notethatwhile thismaybeslow, it is still accelerated
sinceonly cellsin anarrav rangewill beloaded.Also, since
theproblemis I/O boundin theout-of-corecasewe canim-
prove the performancesignificantlyif the PEscanperform
1/0O in parallel.
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