
Multi-Resolution computation and presentation of Contour Trees ∗

V. Pascucci K. Cole-McLaughlin G. Scorzelli

(a) (left) Orrery reproducing the hierarchical relationship between the orbits of the sun, the planets and their moons. Original design (1812) by A. Janvier reprinted
recently by E. Tufte [25]. (center) Contour Tree drawn as an orrery where stars/planets/moons are replaced by critical points and the nested orbits represent the
hierarchy of topological features. The scalar field of this particular example is the inverse air density distributionα of a fuel injection into a combustion chamber.
(right) Semi-transparent level sets ofα displayed together with the Contour Tree drawn with its critical points in their original position.

(b) (left) Contour Tree at three levels of resolution for the electron density distribution(ρ) computed with anab initio simulation for water molecules at high pressure.
At the coarse scale (top) the tree has only one maximum (blue sphere) per water molecule. At medium scale (middle) the topology reconstructs one dipole per molecule
with one maximum and one minimum (red sphere). At fine scale (bottom) only the noise is removed and three extrema per molecule reconstruct each atom in the
simulation. (middle) Semi-transparent level sets ofρ together with the fine scale topology. Adaptive refinement in the area marked with a rectangle can be used to refine
the topology for two particular molecules. This as shown on the right at coarse, medium and fine scale both for the Contour Tree and for the embedding (shown side by
side).

Figure 1: Visualization of multi-resolution Contour Trees for volumetric scalar fields. The topology is visualized both embedded in the input domain (critical points in
their original position) and in an abstract layout that presents topological features using the metaphor of an orrery.

ABSTRACT

The Contour Tree of a scalar field is the graph obtained by contract-
ing all the connected components of the level sets of the field into
points. This is a powerful abstraction for representing the structure
of the field with explicit description of the topological changes of
its level sets. It has proven effective as a data-structure for fast ex-
traction of isosurfaces and its application has been advocated as a
user interface component guiding interactive data exploration ses-
sions. In practice, this use has been very limited due the problem of
presenting a graph that may be overwhelming in size and in which
a planar embedding may be confusing due to self-intersections.
Topological simplification techniques have helped in relieving this

∗This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48.

problem since they allow reducing the size of the graph.

We present a multi-resolution data-structure for representing
contour trees and an algorithm for its construction. Moreover, we
provide a hierarchical layout that allows coarse-to-fine rendering of
the tree in a progressive user interface.

Construction of our multi-resolution model is only slightly more
expensive than the standard tree, but introduces far greater flexibil-
ity when filtering, both uniformly and adaptively, the topology of
the data by importance with respect to different metrics. We have
tested the approach using topological persistence (that is the dif-
ference in function value between a pair of critical points that are
simplified) as the main metric for constructing the topological hi-
erarchy, and using geometric position (containment in a bounding
box) as a secondary metric for adaptive refinement.

(a) (b) (c) (d)

Figure 2: Topology of a triangulated cow model. (a) Contour Tree computed using as Morse function f the height in the vertical direction. (b) The original cow
model. (c) Contour tree drawn with the critical points in their original position on the mesh. (d) Adaptive refinement of the Contour tree where the full topology is
shown only in the bounding box containing the horns.

1 INTRODUCTION

A Morse function over a domainD, is a smooth mapping,
f : D → R, such that all its critical points (maxima, minima and
saddles) are distinct. Complex natural phenomena, both sampled
and simulated, are often modeled as Morse functions. MRI scans
generate Morse functions that are used in medical imaging to recon-
struct human tissues. Electron density distributions computed by
high-resolution molecular simulations are Morse functions whose
topology express bonds among the atoms in molecular structures.
The structure of geometric models used in computer graphics and
CAD applications can be effectively represented in terms of the
topology of a Morse function [14].

The Reeb graph [19] is a simple structure that summarizes the
topology of a Morse function. For functions with simply connected
domains this graph is also simply connected and is called the Con-
tour Tree. The Reeb graph has been used to analyze the evolu-
tion of teeth contact interfaces in the chewing process [20], and to
compute indices of topological similarity for databases of geomet-
ric models [14]. Topological information has been used to guide the
construction of transfer function for volume rendering of scientific
data [26, 22]. A more extensive discussion of the use of the Reeb
graph and its variations in geometric modeling and visualization
can be found in [12].

The first algorithm for constructing Reeb graphs of Morse func-
tions with two-dimensional domains is due to [21]. Given a triangu-
lated surface, this scheme takes as input the set of all distinct level
lines and therefore has worst case time complexityO(n2), wheren
is the number of vertices in the triangulation. AnO(n log n) algo-
rithm for computing contour trees in any dimension was introduced
in [6]. This scheme has been extended in three dimensions to in-
clude the genus of all isosurfaces [18]. The first multi-resolution
representation of the Reeb graph was introduced in [14]. Their
method hierarchically samples the range space off while con-
currently refining the Reeb graph. They obtain a multi-resolution
model that is suitable for fast comparison of graphs. However, this
hierarchy does not represent the topology off at multiple levels of
detail. A formal framework for ranking topological features by per-
sistence has been introduced in [10] and applied to two-dimensional
Morse functions in [2]. Topological simplification is used in [22] to
design transfer function that highlight only the major features in the
data. Topological simplification is also widely used in vector field
visualization to highlight the most important structures present in
the data [23, 24].

Integration of the Contour Tree in user interfaces to help select-
ing isosurfaces has been first suggested [1] but was only fully devel-
oped six years later in [3]. The latter work is particularly interest-
ing for the use of a new concept of “Path Seeds” that links explicitly
the arcs in the Contour Tree to distinct connected components (con-
tours) of the level sets. This introduces the powerful new paradigm

of selecting contours instead of entire isosurfaces. The most recent
extensions of this work introduce high quality topological simplifi-
cation [4] where the contour tree is pruned incrementally to reduce
its complexity and highlight the fundamental structures present in
the data. The scheme involves exact and approximate computation
of several metrics that are used for ranking the “importance” of an
arc before pruning. The results are extremely compelling since they
highlight the direct correlation of anatomic parts in medical data
with single branches in the contour tree. The only limitation is this
approach is the lack of a real multi-resolution representation of the
topological information. As it is well know in the computer graph-
ics community, simplification schemes are best suited for compu-
tation of high quality approximations but tend too be inappropriate
for computing real-time adaptive refinement for interactive data ex-
ploration. In this case we have the additional problem of needing
to compute the layout for the graph, which may be very expensive
when done with an external tool [16] not designed for real-time in-
teraction. Consequently the layout is either poorly distributed at a
coarse level, since it was optimized for a fine level of detail, or it is
recomputed after simplification, which may change completely its
layout loosing the correlation among different levels of resolution
with a confusing effect for the user.

Our scheme employs a multi-resolution representation of the
Contour Tree and an integrated 3D layout. In particular, we adapt
a simple radial graph drawing algorithm [8] to achieve a 2D layout
without self intersections. The arcs in the layout are then embedded
in 3D by moving each node to az elevation equal to the function
value of the corresponding critical point. Each arc is mapped to
anL shape that connects its end nodes at different elevations. The
result is an orrery-like model (see Figure 1(a)), which is similar to
other embeddings typically used for large scale hierarchies [15].

Contributions. Our results are summarized in Figures 1
and 2 with hierarchical computation and adaptive presentation of
the topology of 2D and 3D scalar fields. The main three contribu-
tions of this paper are: (i) we provide a multi-resolution representa-
tion for the Contour Tree with algorithms for uniform and adaptive
refinement on the basis of precomputed metrics; (ii) we provide an
algorithm for computing a multi-resolution Contour Tree directly
from join and split trees and guarantee that atomic simplification
steps of the tree correspond to atomic collapses of proper pairs of
critical points (the minimal topological simplification possible); (ii)
we provide a simple scheme for laying out the tree in a way that
highlights the hierarchical relationships among the critical points
and that can be rendered progressively for real-time user interac-
tion.

We leave to a longer version of this paper the formal
proof of the topological correctness of our atomic simplifi-
cations. The practical results are demonstrated on datasets
of different nature, such as surface meshes typically used in
computer graphics and volumetric models representing scien-

tific data. More examples and a demo software can be found at
http://www.pascucci.org/topology/contour_tree .

2 MULTI -RESOLUTION CONTOUR TREES

Let D be a triangulated domain andf : D → R be a function ob-
tained by linear interpolation of the value off at the vertices ofD.
Morse theory provides a formal framework for understanding the
topology ofD by analyzing the functionf . The fundamental tool
in Morse theory is the characterization of each point ofD as being
either regular or critical.

We assume thatD is a simplicial complex. Therefore, everyk-
cell c of D is the convex hull ofk + 1 vertices ofD. Moreover, a
cell c′ is a calledfaceof c if its vertices are a subset of those ofc.
If c ∈ D then all its faces must be inD. For a vertexv ∈ D, its
link Lkv is the set of cells that do not containv but that are faces
of some cell containingv. Furthermore, thelower link of v, Lk−v ,
is the set of all cells inLkv that have only vertices with function
value smaller thanf(v). Theupper linkLk+

v is the set of cells in
Lkv that have only vertices with function value greater thanf(v).

Definition 1 LetD be a triangulated manifold with boundary and
f : D → R be a piecewise-linear function. A vertexv ∈ D is called
regularif both Lk−v andLk+

v have exactly one connected compo-
nent. Otherwisev is called acritical point and f(v) is called a
critical value.

To deal simply with degenerate cases we use standard symbolic
perturbation [11] by sorting the vertices by function value and sim-
ply replacef(vi) with i in any comparison.

Definition 2 A level setof f is the pre-image of a real valueω,
Lf (ω) = f−1(ω). Given a level set,Lf (ω), we call a connected
component ofLf (ω) a contour.

Morse theory describes how the the topology ofLf (ω) changes
as the isovalueω changes. One of the main results states that ifa
andb are such that the range[a, b] contains no critical values, then
Lf (ω) is homeomorphic toLf (ν) for all ω, ν ∈ [a, b]. This has
deep implications on the structure of the Contour Tree.

Definition 3 Consider the graph obtained by contracting to a point
each contour of every level set off . For a Morse function of a
general domainD this graph is called theReeb graphand can have
a number of cycles depending on the topology ofD [7]. However,
if D is simply connected theReeb graphis also simply connected
and is calledContour Tree.

From the definition it can be seen that the nodes of the con-
tour tree correspond to critical points off and are therefore as-
sociated with the relative critical value. Furthermore, nodes that
correspond to extrema are leaf nodes, and nodes that correspond
to saddle points must have degree three (or higher in degenerate
cases).

Hierarchical Tree Representation We define a multi-
resolution representation of the contour tree that allows linear time
access to simplified representations of the topology. Typically fi-
nite graphs are represented as a list of nodes and a list of arcs, where
each arc is defined as a node pair. Here we use an alternativebranch
decompositionwhere abranchis defined as a monotone path in the
graph traversing a sequence of nodes with non-decreasing (or non-
increasing) value off . The first and last nodes in the sequence are
called the endpoints of the branch. All other nodes are said to be
interior to the branch. A set of branches is called abranch decom-
positionof a graph if every arc the graph appears in exactly one
branch of the set. The standard representation of a graph satisfies
this definition, where every branch is a single arc. We call this the
trivial branch decomposition

B0

B1

B2

B3

Figure 4: A Contour Tree decomposed into branches. The root
branch B0 of the tree is the only one connecting two extrema. These
are the only critical points of the field that cannot be canceled. B1

is a minimum paired with a join saddle, which cannot be canceled
before B3. The branches B2 and B3 are maxima paired with split
saddles. The both can be canceled independently.

From the definition it can be seen that the nodes of the contour
tree correspond critical points off and are therefore associated with
the relative critical value. Furthermore, nodes that correspond to
extrema are leaf nodes, and nodes that correspond to saddle points
must have degree three (or higher in degenerate cases). Figure 3(a)
shows a simple terrain as an example of Morse function, where the
elevation of each point is the value off . Figure 3(b) show the
corresponding Contour tree. Figure 3(c) shows the planar layout
proposed in [21] where they coordinate of each node is constrained
to be equal to to the corresponding critical value off. Note that
with this constraint the graph cannot be drawn in the plane without
self-intersections.

Hierarchical Graph Representation We define a multi-
resolution representation of the contour tree that allows linear time
access to simplified representations of the topology. Typically finite
graphs are represented as a list of nodes and a list of arcs, where
each arc is defined as a node pair. In this section we discuss an al-
ternative representation called a branch decomposition. Abranch
is a monotone path in the graph traversing a sequence of nodes with
non-decreasing (or non-increasing) value off . The first and last
nodes in the sequence are called the endpoints of the branch. All
other nodes are said to be interior to the branch. Note that a branch
can be thought of equally as a sequence of nodes or a sequence
of arcs. A set of branches is called abranch decompositionof a
graph if every arc the graph appears in exactly one branch of the
set. The standard representation of a graph satisfies this definition,
where every branch is a single arc. We call this the trivial branch
decomposition

Definition 5 A branch decomposition of a tree is ahierarchical tree
if: (i) there is exactly one branch connecting two leaves (called root
branch), (ii) every other branch connects one leaf to a node that is
interior to another branch.

We wish to construct a branch decomposition representing the
contour tree of a scalar fieldf : D → R, such that the endpoints of
each branch (except the root) represent an extremum paired with a
saddle point of the scalar field. See Figure 4. The tree can be sim-
plified by removing a branch that does not disconnect the tree. This
corresponds to the cancellation of two critical points in the scalar
filed. This simplification process defines a hierarchy of cancella-
tions where a branchB1 is said to be the parent of branchB3 if

one endpoint ofB3 is interior toB1. The root branch has no par-
ent and cannot be simplified. Removal of a parent before one of its
children disconnects the tree. In the next section we will discuss the
construction of a branch decomposition based on the persistence of
critical point pairs.

Once the decomposition is constructed and the parent-child re-
lations are defined, we can build any approximation of the original
tree by incrementally connecting child branches to their parent. In
particular, we associate values to each branch for several metrics
(such as persistence, geometric location or other) and artificially en-
force a nesting condition that requires, for all the metrics, the value
of the parent to be greater than or equal to the value of its children.
Given a tolerance threshold for several metrics at the same time,
we start from the root branch and iteratively select children with
metrics above the required thresholds.

Tree Layout and Presentation. We define an embedding
of the contour tree, which can be used as a user interface tool. The
vertical coordinate-axis is fixed to represent the value of the scalar
field. In doing so we loose one degree of freedom, which makes
it impossible, in general, to build a planar embedding without self-
intersections. Figure 3 is an example of a simple scalar field with
a contour tree that cannot be embedded in the plane without self-
intersections. Thus, in this section, we describe a three-dimensional
embedding of the contour tree that uses thez-coordinate to rep-
resent the field value, and such that the projection onto the plane
z = 0 has no self-intersections. We also provide a progressive
construction of this embedding using the multi-resolution represen-
tation given above.

β β1

β2

β3

N

N1

N2

N3

c

Dk

Dk+1

Dk+2

Figure 5: Shows the arrangement used to compute the angular
wedges β1, β2, and β3 for the nodes N1, N2, and N3 that are chil-
dren of N .

Our visualization scheme makes use of an algorithm for the lay-
out of rooted trees [6]. Any such algorithm could be used to pro-
duce an embedding. We chose a radial layout algorithm that posi-
tions the root node of the tree at the origin and positions its descen-
dants in concentric circles.

The main idea of the layout algorithm is to define a sequence of
consecutive disks,D1 ⊂ D2 ⊂ D3 ⊂ · · · , with radii r1 < r2 <

Figure 3: Hierarchical decomposition of a Contour Tree with four branches.
The root branch B0 connects the two global extrema. The branches B2 and
B3 pair two maxima with split saddles and can be canceled independently. B1

pairs a minimum with a join saddle and cannot be canceled before B3 because
of their parent-child relation.

Definition 4 A branch decomposition of a tree is ahierarchical
decompositionif: (i) there is exactly one branch connecting two
leaves (called root branch), (ii) every other branch connects one
leaf to an interior node of another branch.

We construct a hierarchical decomposition of a contour tree such
that the endpoints of each branch (except the root) represent a
saddle-extremum pair that form an atomic topological cancellation
(critical points can be canceled only in pairs). This is illustrated
in Figure 3. The tree can be simplified by removing a branch that
does not disconnect the tree. This corresponds to the cancellation
of two critical points in the scalar filed. This simplification pro-
cess defines a hierarchy of cancellations where a branchB1 is said
to be the parent of branchB3 if one endpoint ofB3 is interior to
B1. The root branch has no parent and cannot be simplified. Re-
moval of a parent before one of its children disconnects the tree. In
the next section we will discuss the construction of a hierarchical
decomposition based on the persistence of critical point pairs.

Once the hierarchy has been constructed we build different ap-
proximations of the original tree by incrementally connecting child
branches to their parent starting from the root. To do so, we as-
sociate min-max values to each branch for several metrics (such
as persistence, geometric location or other) and artificially enforce
a nesting condition that requires the min-max value of the parent
to contain the one of any child. This standardsaturationof the
ranges associated with each element of the hierarchy allows out-
put sensitive construction of and adaptive refinement with a sim-
ple depth first traversal, without accessing any unnecessary element
(see [13, 17] for more details).

Hierarchical Contour Trees Single resolution algorithms
for computing a contour tree can be found in [6] and [18]. In both
cases one needs to make two passes through the data to compute
the Join Treeand theSplit Tree. These trees are then merged to
construct the Contour Tree. Here we use a similar approach but
build directly a hierarchical decomposition of the Contour Tree. To
do so we store all our trees as branch decompositions and modify
the algorithm that merges the join and split trees. The general idea
is illustrated in the example of Figure 4. At each stage (a row in
the figure) the branches candidate for transfer into the Contour Tree
are pointed by a gray arrow. The one effectively selected (by some
measure of priority) is drawn with a bold and is the moved into the
Contour Tree at the next stage. The large nodes are the endpoints
of the branches (initially all). For example, in the second row, after
the branch 10-6 has been moved to the Contour Tree, the Join Tree
has a branch with endpoints 9 and 4 and middle node 6. Note in the
third stage the red arrow that points to the branch 1-3-4, which is
not a candidate for removal since the node 4 is properly paired with
node 9 and not with node 1. At the fifth step the Join and Merge
tree have been reduced to the branch 7-5-4-3-1, which becomes the
root branch of the Contour Tree,.

6

6

6

6

6

10

10

10

10

10

2

3

2

2

3

2

3

2

3

2

3

1

1

1

1

1

1

1

1

1

7

7

7

7

7

7

7

7

7

5

8

5

8

5

8

5

5

5

8

8

8

5

8

5

8

4

4

4

4

4

4

4

9

9

9

9

9

9

9

6

6

6

6

10

2

3

2

6

1 1

7 7

5

8

5

8

4 4

9 9

10

3

3

6 6

6 66

3

3

3

3

3

3

3

5

5

5

4

4

4

4

4

Figure 4: Incremental construction (top to bottom) of a hierarchical decom-
position of a Contour Tree from its Join Tree and Split Tree. Each row of the
table show all three trees: Join Tree on the left, Split Tree in the middles, and
Contour Tree on the right.

Our data structure is based on branches, where thelengthof a
branch is the difference in function value of its endpoints, taken in
absolute value. This value is returned byLength(B). Leaf nodes
are classified as either minima or maxima, by checking if the node
is a starting node or ending node respectively. Furthermore, saddles
are either join or split points. An interior node is a join saddle if it
is the ending point of some branch, whereas it is a split saddle if

it is the starting point of some branch. In this characterization a
join saddle corresponds to a saddle point off where two contours
merge, and a split saddle to a saddle where one contour divides.

The functionCanSimplify(G, B) returnstrue if the branchB in
the graphG represents a valid cancellation. The first criterion for
this to be true is that the branch must have no children. The sec-
ond criterion that must be checked is that the endpoints ofB are
either a minimum and a join saddle or a split saddle and a max-
imum. In other words, a branch can be simplified if it connects
directly two critical points that can be canceled in pair. In the long
version of this paper we prove, for scalar fields of any dimension,
that this selection always leads to a proper pairing of critical points
in a topological sense.

Once a tree is constructed we can perform several queries on
it. First, we include the functionGetTree(B) that returns the tree
that contains the branchB. For an arbitrary branch decomposition
it is possible to have end nodes of degree two. We can check if
a node,N , has degree two with the functionIsRegular(T, N). If a
node is a starting point we can perform the queryUpBranch(T, N),
which returns the branch that starts at the node. Likewise, we can
call DownBranch(T, N) on ending points to access the branch that
ends at the node. IfCanSimplify(B) returns true for a branchB,
then exactly one of its endpoints represents a saddle point. In this
case we can access the unique saddle point of the branch by calling
GetSaddle(B). Finally, a branch is defined to be a leaf branch if it
has no interior nodes and one of its endpoints is a leaf node. The
functionIsLeafBranch(T, E) returns true ifE is a leaf branch.

Join and Split Trees. Any of the standard algorithms for
computing the join and split trees can be implemented, but the re-
sulting trees must be stored as trivial branch decompositions. In
these algorithms every node in each tree represents a critical point.
Thus there will be some degree-two nodes, which correspond to
saddle points from the other tree.

For completeness we briefly describe the algorithm for con-
structing the join and split trees that given in [6], which is a union-
find sweep through the data that maintains in a graph the history of
the union events. We make use of a standard Union-Find data struc-
tures that is managed by the functionsNewUF(), NewSet(UF, i),
Find(UF, i), and Union(UF, i, j), which respectively create the
data structure, add a new set, return the set containing a given
index, and merge two sets. The boolean functionsIsMin(v) and
IsCritical(v) return true ifv is a local minimum off and a critical
point off .

Algorithm 1.JoinTree
Input: Sorted array ofn vertices ({vi}) and a triangulated sur-

face (D).
Output: Join tree (JT).

1. JT = NewGraph()
2. UF = NewUF()
3. for i = 0 to n− 1 do:
4. if IsCritical(vi) thenAddNode(JT, i)
5. i′ = NewSet(UF, i)
6. for each edgevivj with j < i do:
7. j′ = Find(UF, j)
8. if j′ 6= i′ thenAddBranch(JT, j′, i′)
9. Union(UF, i′, j′)

10. return JT

The algorithm for constructing the split tree,ST , is symmetric
with and inverse sweep of the data points.

Multi-Resolution Contour Tree. In previous contour tree
algorithms the Contour Tree,CT , is constructed form theJT and
ST by “peeling off” leaves of theJT andST and adding them
to theCT . This approach uses a queue to store the leaves of the

JT andST , which can be removed in any order. in our algorithm
we impose instead a particular order of cancellation using a priority
queue that provides always access to the shortest leaf branch. Once
a branch is removed from the queue the adjacent branches in the
JT andST are merged, which is whyJT andST must be stored
as branch decompositions. These merges can change the length
(and therefore the priority) of the branches in the queue. The cor-
responding updated is done in a lazy way (nodes are updated only
when they pop out of the queue) by thePopValid(PQ) function.

The priority queue is a standard data-structure that uses the oper-
ations:Pop(PQ) andPush(PQ, B), that retrieve the top element
of the queue, and push a branch onto the queue respectively. It
also supports the testIsEmpty(PQ) that returns true if there are no
elements in the queue. In our case the priority is the length of a
branch,B, andPop(B) is guaranteed to return the branch with the
lowest priority. The priority of a branch,B, can be queried using
the functionPriority(B).

Algorithm 2.PopValid
Input: Priority Queue (PQ) of branches
Output: Branch (B) that is a valid simplification

1. B = Pop(PQ)

2. isV alid = false

3. while not isV alid do:
4. if not CanSimplify(B) then:
5. B = Pop(PQ)

6. else: ifLength(B) 6= Priority(B) then:
7. Priority(B) = Length(B)

8. Push(PQ, B)

9. B = Pop(PQ)

10. else:isV alid = true

11. return B

The procedurePopValid(PQ) ensures that we can pull the first
branch that represents a valid cancellation from the queue. In
this way we can ensure that each branch represents a topological
simplification off . For readability we introduce another subrou-
tine of the contour tree algorithm that does the work of “peeling
off” a leaf branch. In this routine we make use of the function
MergeBranches(B1,B2) that merges the branchesB1 andB2 into
B3.

Algorithm 3.PeelOffBranch
Input: Branch (B), Join Tree (JT) and Split Tree (ST)
Output: A branch representing a valid simplification ornull.

1. XT, Y T, N = MyTree(B), OtherTree(B), GetSaddle(B)

2. RemoveBranch(XT, B)
3. if IsRegular(Y T, N) then:
4. B1, B2 = UpBranch(Y T, N), DownBranch(Y T, N)

5. B3 = MergeBranches(B1, B2)

6. if CanSimplify(B3) then: return B3

7. return null

Using the subroutines PopValid(PQ) and
PeelOffBranch(B, JT, ST) the code for our main algorithm,
BuildContourTree(JT, ST), is simple.

Algorithm 4.BuildContourTree
Input: Join Tree (JT) and Split Tree (ST)
Output: Contour Tree (CT)

1. CT = NewGraph; PQ = NewPQ
2. for eachB ∈ JT, ST do:
3. if IsLeafBranch(B) andCanSimplify(B) then:
4. Push(PQ, B)

5. while not IsEmpty(PQ) do:
6. Btop = PopValid(PQ)
7. AddBranch(CT, Btop)
8. Bnext = PeelOffBranch(Btop, JT, ST)
9. if not Bnext 6= null thenPush(PQ, Bnext)

10. return CT

It is clear from the discussion that this algorithm produces a
multi-resolution contour tree, such that each branch represents a
valid topological simplification. We can now define an order on the
branches that allows to extract a contour tree after any number of
simplifications in linear time. First, we define the persistence of a
branch to be the greater of its length and the persistence of each
of it children. This definition differs from the definition of persis-
tence given in [10] because it takes into consideration the topolog-
ical obstructions. Thus a pair of critical points is never assigned a
persistence value that is less than any of its obstructions.

The same analysis as in [5] can be used to show that the com-
plexity of BuildContourTree isO(n log n) wheren is the number
of nodes inJT andST . Using a simple FIFO queue instead of a
priority queue would yield a complexity ofO(n) but with the risk
of building an unbalanced tree. In practice this does not seem to be
a problem and a linear queue may be advisable for a faster imple-
mentation with lighter data-structures.

3 LAYOUT , TRAVERSAL AND V ISUALIZATION

In a user interface that includes the Contour Tree as a tool for in-
teractive exploration of topology, it is often desirable to use a tree
layout that highlights naturally: (i) the separation among branches
(either by movement or by minimization of self-intersections); (ii)
the function value of the critical points (e.g. mapping it to the ver-
tical direction in the layout); (iii) thescaleof the topological fea-
tures (e.g. level of persistence); (iv) hierarchical parent-child re-
lations among topological features. Moreover, the layout should:
(v) remain stable during the interactive navigation with changing
adaptive refinement, and (vi) the information should be spread as
uniformly as possible to optimize the use of the screen space.

As often happens, such objectives are often in conflict. For ex-
ample a 2D layout using one axis to represent the function value of
the critical points does not allow to guarantee a layout without self
intersections. This problem is shown in Figure 7 where a simple
terrain with very few extrema cannot be drawn without self inter-
sections if one uses the planar embedding proposed in [1]. Be-
cause of this problem we develop a three-dimensional embedding
of the contour tree, which is inspired to the orrery metaphor shown
in Figure 1(a). This is illustrated by redrawing the graph of Fig-
ure 3 as in Figure 8(a), where each the root is a vertical line. All the
other branches areL shapes that connect to their extremum (red for
minimum, blue for maximum) to its paired saddle along the parent
(white circle). We map the field value to the elevation along the
z-coordinate so that the vertical span of each branch equals its per-
sistence. The projection of the tree in thexy plane is arranged with
a circular layout that has no self intersections as discussed below
and illustrated in Figure 9.

Our visualization scheme makes use of an algorithm for the lay-
out of rooted trees [9]. Any such algorithm could be used to pro-
duce an embedding. We chose a radial layout algorithm that posi-
tions the root node of the tree at the origin and positions its descen-
dants in concentric circles.

The main idea of the layout algorithm is to define a sequence of
consecutive disks,D1 ⊂ D2 ⊂ D3 ⊂ · · · , with radii r1 < r2 <
r3 < · · · . Then we compute an angular wedge at each node such
that the subtree rooted at that node is contain entirely within the
angular wedge. The root node is positioned at the origin and the
nodes of depthk are arranged on the boundary of the diskDk. We

Figure 5: (top row) A sequence of level sets of the neghip dataset representing the spatial probability distribution of the electrons in a high potential protein
molecule. (bottom-left) Critical points of the coarse scale topology, displayed together with a semi transparent level set. (bottom-middle) Contour Tree of the coarse
scale topology. (bottom-right) Contour Tree of the full resolution topology.

require the ratio of consecutive radii to be a constant,ρ =
rk+1

rk
>

1. This guarantees the branches will be spread out nicely. If instead
we fixed the difference between consecutive radii, then the ratio
rk+1

rk
→ 1 ask →∞, and the maximal size of the angular wedges

goes to0. Thus the subtrees of nodes far away from the origin will
appear to be arranged along a straight line.

Figure 8(b) illustrates the algorithm for computing the angular
wedge of a nodeN , which is on the boundary of the diskDk. Let
β be the angular wedge that has been computed forN . First, we
can guarantee no self-intersections by ensuring that all arcs drawn
from N to one of its children lie to the right of the tangent to the
disk Dk at N . Otherwise, an arc could cross into the interior of
the diskDk, and may intersect an edge of the tree that has already
been drawn. To ensure this is not the case we must restrictβ ≤
2cos−1(rk

rk+1
) = 2cos−1(1

ρ
). In the figure we show the limiting

case whereβ = 2cos−1(1
ρ
). In our implementation we useρ =√

2, thus we restrictβ < 2cos−1(1√
2
) = π

2
. However, one can

see that it is only necessary to enforce this condition for the nodes
on the boundary of the diskD1, since we have chosen

rk+1
rk

to be
constant.

In figure 8 the children of the nodeN are the nodesN1, N2, and
N3. To compute the angular wedgesβi we partition the angleβ
proportionally to the sizes of the subtrees rooted at each node. If
we letni be the number of leaves of the subtree rooted atNi andn
the number of leaves of the subtree rooted atN , then we have the
following relations:

n = n1 + n2 + n3,
β = β1 + β2 + β3,
n1 : n2 : n3 = β1 : β2 : β3.

Therefore, we have thatβi = ni
n

β ≤ β. Sinceβ < π
2

then
βi < π

2
and we can guarantee that the subtree rooted atNi is free

of self-intersections.
To compute the embedding of a hierarchical tree we use the

parent-child relationship between branches to construct a rooted
tree whose nodes are the branches of the hierarchical tree. Apply-
ing the layout algorithm above to this tree produces a planar embed-
ding, which we use for the(x, y)-coordinates of nodes in the hier-

archical tree. For each branch we assign these(x, y)-coordinates to
all its interior nodes and its unpaired endpoint(s). As stated above
thez-coordinate of each node is assigned the function value of the
corresponding critical point in the scalar field. The branches are
then visualized as “L” shapes, where the base of the “L” connects
the branch to its parent along a horizontal line at the height of the
paired endpoint.

Visualization In this section we demonstrate the use of the
multi-resolution contour tree by showing how to produce output
sensitive visualizations. We visualize the contour tree by embed-
ding the nodes of the tree at the location of the critical points it
space. Arcs are drawn as straight line segments connecting the end-
points. Thus a branch is drawn as a chain of connected arc seg-
ments. Since the branches are sorted by their persistence we al-
ways draw the branches with greater persistence first (see Figures 5
and 6).

The branch decomposition representation of theCT allows for
uniform or adaptive refinement of the tree. Uniform simplifi-
cation is achieved by interrupting the drawing process when the
first branch with persistence less than a specified value is reached.
Adaptive simplification is almost as easy: before each branch is vi-
sualized it is tested to see if it satisfies the adaptive criterion. In
Figure 10 the adaptive refinement is demonstrated using a spatial
criterion. The criterion is to test if the bounding box of a branch in-
tersects a user-provided bounding box describing a region of inter-
est. The bounding box of a branch,B, is defined to be the bounding
box of the region in space that contains all the critical points that
must be canceled in order to simplifyB.

The bounding boxes of each branch in the multi-resolution con-
tour tree are computed by a simple recursive algorithm that merges
the bounding box of the branch’s endpoints with the bounding
boxes of each of its child branches. After the bounding boxes have
been computed the user is allowed to select a region of interest by
manipulating a bounding box in the embedding space. We can now
adaptively extract aCT that has a greater level of detail in the re-
gion of interest by only visualizing those branches whose bounding
boxes intersect the user defined box.

Although this test is very simple it demonstrates a wide range of
possibilities for user interaction with theCT . Adaptive refinement

(a) Coarse scale topology displayed on the abstract orrery interface (top) and in
the original embedded space with a level set (bottom).

(b) Full resolution topology displayed on the abstract orrery interface (top) and
in the original embedded space with a level set (bottom).

Figure 6: Topology of the electron density distribution in a simulation of a
silicium grid. The topology can be presented incrementally from coarse (a) to
fine (b).

becomes increasingly important when one begins to visualize large
contour trees. In this case a view-dependent criterion would be use-
ful in speeding up the rendering of the tree, as well as reducing the
amount of information the user has to take it. Using such a criterion
one would not render branches if they are outside the viewing area,
too far away, or too small to see.

4 CONCLUSIONS

We have provided a data structure for representing multi-resolution
Contour Trees and a simple algorithm for their construction. For
piece-wise linear functions on simply-connected domains of any
dimension the scheme can be proven to be topologically correct.

(a) (b)

Figure 7: (a) A simple terrain model. The Morse function f is the vertical
elevation. The critical points are highlighted with spheres of different colors:
four red maxima, three yellow minima and five blue saddles. (b) Standard 2D
layout of the Contour Tree with the y coordinate equal to the function value of
the critical points and the x coordinate used to minimize self-intersections. In
this case there is always at least one self-intersection.

B0
B2

B1

B3

B0

B1

B2

B3

Figure 4: A Contour Tree decomposed into branches. The root
branch B0 of the tree is the only one connecting two extrema. These
are the only critical points of the field that cannot be canceled. B1

is a minimum paired with a join saddle, which cannot be canceled
before B3. The branches B2 and B3 are maxima paired with split
saddles. The both can be canceled independently.

From the definition it can be seen that the nodes of the contour
tree correspond critical points off and are therefore associated with
the relative critical value. Furthermore, nodes that correspond to
extrema are leaf nodes, and nodes that correspond to saddle points
must have degree three (or higher in degenerate cases). Figure 3(a)
shows a simple terrain as an example of Morse function, where the
elevation of each point is the value off . Figure 3(b) show the
corresponding Contour tree. Figure 3(c) shows the planar layout
proposed in [?] where they coordinate of each node is constrained
to be equal to to the corresponding critical value off. Note that
with this constraint the graph cannot be drawn in the plane without
self-intersections.

Hierarchical Graph Representation We define a multi-
resolution representation of the contour tree that allows linear time
access to simplified representations of the topology. Typically finite
graphs are represented as a list of nodes and a list of arcs, where
each arc is defined as a node pair. In this section we discuss an al-
ternative representation called a branch decomposition. Abranch
is a monotone path in the graph traversing a sequence of nodes with
non-decreasing (or non-increasing) value off . The first and last
nodes in the sequence are called the endpoints of the branch. All
other nodes are said to be interior to the branch. Note that a branch
can be thought of equally as a sequence of nodes or a sequence
of arcs. A set of branches is called abranch decompositionof a
graph if every arc the graph appears in exactly one branch of the
set. The standard representation of a graph satisfies this definition,
where every branch is a single arc. We call this the trivial branch
decomposition

Definition 5 A branch decomposition of a tree is ahierarchical tree
if: (i) there is exactly one branch connecting two leaves (called root
branch), (ii) every other branch connects one leaf to a node that is
interior to another branch.

We wish to construct a branch decomposition representing the
contour tree of a scalar fieldf : D → R, such that the endpoints of
each branch (except the root) represent an extremum paired with a
saddle point of the scalar field. See Figure 4. The tree can be sim-
plified by removing a branch that does not disconnect the tree. This
corresponds to the cancellation of two critical points in the scalar
filed. This simplification process defines a hierarchy of cancella-
tions where a branchB1 is said to be the parent of branchB3 if

one endpoint ofB3 is interior toB1. The root branch has no par-
ent and cannot be simplified. Removal of a parent before one of its
children disconnects the tree. In the next section we will discuss the
construction of a branch decomposition based on the persistence of
critical point pairs.

Once the decomposition is constructed and the parent-child re-
lations are defined, we can build any approximation of the original
tree by incrementally connecting child branches to their parent. In
particular, we associate values to each branch for several metrics
(such as persistence, geometric location or other) and artificially en-
force a nesting condition that requires, for all the metrics, the value
of the parent to be greater than or equal to the value of its children.
Given a tolerance threshold for several metrics at the same time,
we start from the root branch and iteratively select children with
metrics above the required thresholds.

Tree Layout and Presentation. We define an embedding
of the contour tree, which can be used as a user interface tool. The
vertical coordinate-axis is fixed to represent the value of the scalar
field. In doing so we loose one degree of freedom, which makes
it impossible, in general, to build a planar embedding without self-
intersections. Figure 3 is an example of a simple scalar field with
a contour tree that cannot be embedded in the plane without self-
intersections. Thus, in this section, we describe a three-dimensional
embedding of the contour tree that uses thez-coordinate to rep-
resent the field value, and such that the projection onto the plane
z = 0 has no self-intersections. We also provide a progressive
construction of this embedding using the multi-resolution represen-
tation given above.

β β1

β2

β3

N

N1

N2

N3

c

Dk

Dk+1

Dk+2

Figure 5: Shows the arrangement used to compute the angular
wedges β1, β2, and β3 for the nodes N1, N2, and N3 that are chil-
dren of N .

Our visualization scheme makes use of an algorithm for the lay-
out of rooted trees [?]. Any such algorithm could be used to pro-
duce an embedding. We chose a radial layout algorithm that posi-
tions the root node of the tree at the origin and positions its descen-
dants in concentric circles.

The main idea of the layout algorithm is to define a sequence of
consecutive disks,D1 ⊂ D2 ⊂ D3 ⊂ · · · , with radii r1 < r2 <

(a) (b)

Figure 8: (a) Orrery-like arrangement of the hierarchical decomposition of the
Contour Tree in Figure 3. (b) Computation of the angular wedges β1, β2, and
β3 for the nodes N1, N2, and N3 that are children of N . With this angular
wedge distribution the layout has not self intersections.

The use of this data structure has been demonstrated by showing
how to adaptively extract output sensitive contour trees.

We plan to extend the work on proving topological correctness
for general volumetric domains. These datasets pose a problem
because it is more difficult to determine cancellations for criti-
cal points that do not create junctions or bifurcations. In three-
dimensional fields there can be two types of saddle points. This
makes it possible for the two types of saddle points to form a pair
than can be canceled, however, it is difficult to test if a pair of this
type can be canceled.

REFERENCES

[1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The
contour spectrum. In Roni Yagel and Hans Hagen, editors,IEEE Vi-
sualization9́7, pages 167–175. IEEE, November 1997.

[2] Peer-Timo Bremer, Herbert Edelsbrunner, Bernd Hamann, and Vale-
rio Pascucci. A multi-resolution data structure for two-dimensional
Morse functions. InProceeding of IEEE Conference on Visualization,
pages 139–146, October 2003.

[3] H. Carr and J. Snoeyink. Path seeds and flexible isosurfaces - using
topology for exploratory visualization. InProceeding of IEEE TCVG
Symposium on Visualization (VisSym ’03), pages 49–58, Grenoble, Fr,
May 2003.

Figure 9: Projection to the xy plane of the orrery layout for the full resolution
Contour Tree of the NegHip dataset shown on the bottom-right side of Figure 5

Figure 10: (top row) Triangulated models of a hippopotamus and dinosaur.
(middle row) Complete Contour Trees drawn with its critical points in their orig-
inal position. (bottom row) Adaptive refinement of the trees with full detail only
around the head of the model.

[4] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible iso-
surfaces using local geometric measures. InIEEE Visualization, pages
497–504, October 2004.

[5] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour
trees in all dimensions. InProceedings of the eleventh annual ACM-
SIAM symposium on Discrete algorithms, pages 918–926, January
2000.

[6] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour
trees in all dimensions.Computational Geometry Theory and Appli-
cations, 2001. To Appear (extended abstract appeared at SODA 2000).

[7] Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer, Vijay
Natarajan, and Valerio Pascucci. Loops in reeb graphs of 2-manifolds.
In ACM Symposium on Computational Geometry, pages 344–350,
July 2003.

[8] Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall, 1999.

[9] Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall, 1999.

[10] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topo-
logical persistence and simplification. InProceeding of The 41st An-
nual Symposium on Foundations of Computer Science. IEEE, Novem-
ber 2000.

[11] Herbert Edelsbrunner and Ernst P. Mucke. Simulation of simplicity:
A technique to cope with degenerate cases in geometric algorithms.
In Symposium on Computational Geometry, pages 118–133, 1988.

[12] A. T. Fomenko and T. L. Kunii, editors.Topological Modeling for
Visualization. Springer-Verlag, Tokyo, 1997.

[13] Thomas Gerstner and Renato Pajarola. Topology preserving and con-
trolled topology simplifying multiresolution isosurface extraction. In
T. Ertl, B. Hamann, and A. Varshney, editors,Proceedings Visualiza-
tion 2000, pages 259–266, 2000.

[14] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii. Topology
matching for full automatic similarity estimation of 3d shapes. In
ACM SIGGRAPH, pages 203–212, August 2001.

[15] E. Kleiberg, H. van de Wetering, and J.J. van Wijk. Botanical visu-
alization of huge hierarchies. InProceedings IEEE Symposium on
Information Visualization (InfoVis’2001), pages 87–94, 2001.

[16] Eleftherios Koutsofios and Stephen C. North.Drawing graphs with
dot. Murray Hill, NJ.

[17] P. Lindstrom and V. Pascucci. Terrain simplification simplified:
A general framework for view-dependent out-of-core visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics,
8(3):239–254, July-September 2002.

[18] Valerio Pascucci and Kree Cole-McLaughlin. Efficient computation
of the topology of the level sets. InIEEE Visualization, pages 187–
194, October 2002.

[19] G. Reeb. Sur les points singuliers d’une forme de pfaff completement
integrable ou d’une fonction numerique.Comptes Rendus Acad. Sci-
ences Paris, 222:847–849, 1946.

[20] Y. Shinagawa, T. L. Kunii, H. Sato, and M. Ibusuki. Modeling the
contact of two complex objects: With an application to characterizing
dental articulations.Computers and Graphics, 19:21–28, 1995.

[21] Y. Shinagawa and T.L. Kunii. Constructing a Reeb graph automati-
cally from cross sections.IEEE Computer Graphics and Applications,
11:44–51, November 1991.

[22] S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume
skeletonization and its application to transfer function design.Graph-
ical Models, 66(1):24–49, 2004.

[23] Alexandru Telea and Jarke J. van Wijk. Simplified representation of
vector fields. InProceedings of the conference on Visualization ’99,
pages 35–42. IEEE Computer Society Press, 1999.

[24] Xavier Tricoche, Gerik Scheuermann, and Hans Hagen. A topology
simplification method for 2d vector fields. InProceedings of the con-
ference on Visualization ’00, pages 359–366. IEEE Computer Society
Press, 2000.

[25] Edward R. Tufte. Envisioning Information. Graphics Press LLC,
Cheshire, Connecticut, 1990.

[26] Gunther H. Weber and Gerik Scheuermann.Automating Transfer
Function Design Based on Topology Analysis. 2004.

