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ABSTRACT

We present an isocontouringalgorithm which is near-optimal
for real-time interaction and modification of isovalues in large
datasets. A preprocessing step selects a subset � of the
cells which are considered as seed cells. Given a particular
isovalue, all cells in � which intersect the given isocontour
are extracted using a high-performance range search. Each
connected component is swept out using a fast isocontour
propagation algorithm. The computational complexity for
the repeated action of seed point selection and isocontour
propagation is ��� log ���
	��� , where ��� is the size of � and
� is the size of the output. In the worst case, ������������ ,
where � is the number of cells, while in practical cases, ���
is smaller than � by one to two orders of magnitude. The
general case of seed set construction for a convex complex
of cells is described, in addition to a specialized algorithm
suitable for meshes of regular topology, including rectilinear
and curvilinear meshes.

Keywords: Visualization, Scalar Data, Isocontouring,
Range Query

1 INTRODUCTION

A wide range of techniques have been developed for the
visualization of scalar fields defined by a function ������
over a given domain � . One of the most common and
useful approaches is to compute and display isocontours� �����! ������"�$#&% . It is estimated that in a 3D domain � ,
the average number of cells intersected by an isocontour will
be ����� 2 ' 3  [5], where � is the number of cells, which can

1See also
http://www.cs.purdue.edu/research/shastra
2Department of Com-
puter Sciences, Purdue University, West Lafayette, IN 47907-1398 USA.
Email: ( bajaj,pascucci,drs ) @cs.purdue.edu

be generalized to ������*,+.- 1 /,' +� for a 0 -dimensional domain.
Hence algorithms which perform an exhaustive covering of
cells are found to be inefficient, spending a large portion of
time traversing cells which do not contribute to the contour.

This fact has a great impact on the amount of interaction
which is possible between the user and the visualization.
Interactive manipulation and control of visualization param-
eters allow the user to more quickly locate a region of interest
and in general provide the user with a better understanding
of the scalar field as a whole from display of contours, which
inherently represent only a subset of the entire field.

We present an automated isocontour extraction algorithm of
near-optimal complexity for the case of multiple isovalue
queries. A one-pass preprocessing step through the volume
data selects a subset � of the volume cells which are main-
tained as candidate seed cells. The general case for a cell
complex of arbitrary topology is described, as well as a sim-
plification for structured data. For any isovalue, it is guar-
anteed that each connected component of the isocontour will
intersect at least one cell in � . A subsequent preprocessing
step generates a search structure for the cells in � , permitting
��� log ���1	2�� search for all cells in � which contain a given
isovalue, where ��� is the size of the � and � is the size of the
output. Cells which intersect the given isovalue are used as
start cells for an isocontour propagation algorithm, visiting
only the cells which are intersected by the isocontour, result-
ing in an overall complexity of ��� log ���3	4�� . We present
results and statistics for volume data from several domains.

2 RELATED WORK

Extraction of isocontours from scalar data has received a
great deal of attention in recent years. Among the contribu-
tions to the field are methods for classifying and computing
intersections within a single cell [7, 11, 12, 17]. Here we
are concerned primarily with the search for intersected cells,
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while the choice of triangulation technique can be chosen
based on the data characteristics and topological needs of the
application.

The majority of the techniques for accelerating the extraction
of isocontours do so by limiting the number of cells that
are visited, thereby reducing the overhead associated with
the inevitable search for cells which are intersected by the
isocontour.

Wilhelms and Van Gelder[18] use an efficient partial oc-
tree partitioning of a structured mesh with hierarchical����� ��� ���
	
� data in order to quickly locate cells which are
intersected by the isocontour while skipping large regions of
space with no contribution to the contour. Such a geometric
decomposition works well for smooth data with high spatial
coherence but suffers when applied to noisy data.

Recent techniques have concentrated on processing of the
value space of the cells rather than the geometric space.
Giles and Haimes [3] describe a method which forms two
sorted lists of cells, one by minimum value and the other
by maximum value. The maximum cell range, ∆ # , is com-
puted, which allows the limitation of the search to cells with
minimum value in the range

� #� ∆ #�� # � for a given iso-
value # . Cells in this range which do not cross the threshold
are removed by inspection. For small changes in # , an in-
cremental approach of adding new cells and removing cells
outside the given # gives improved performance. Evident
in this approach is the fact that a single cell with a large ∆ #
drastically reduces the effectiveness of the technique when
specifying a random isovalue.

Gallagher describes a technique called span filtering [2], in
which the entire range space is divided into a fixed number
of buckets. Cells are grouped into buckets based on the
minimum value taken on by the function over the cell. Within
each bucket, cells are classified into several lists based on the
number of buckets which are spanned by the range of the
cell. For an individual isovalue, cells which fall into a given
bucket only need be examined if their span extends to the
bucket containing the isovalue.

Itoh and Koyamada compute a graph of the extrema values
in the scalar field [5]. Every connected component of an
isocontour is guaranteed to intersect at least one arc in the
graph. Isocontours are generated by propagating contours
from a seed point detected along these arcs. Noisy data with
many extrema will reduce the performance of such a strategy.

Shen and Johnson describe a Sweeping Simplices algorithm
which maintains two lists of cells, one sorted by minimum
cell value, the other by the maximum cell value [14]. For
a given isovalue, a binary search in the minimum value list
determines all cells with minimum value below the isovalue.
Pointers from the minimum value list to the maximum value
list are followed to set a corresponding bit for each candidate
cell. At the same time, the candidate cell with the largest

maximum value which is less than the isovalue is determined.
As a result, all marked (candidate) cells to the right of this
cell in the maximum list must intersect the contour, as they
have minimum value below the isovalue and maximum value
above the isovalue. Optimizations are performed when the
isovalue is changed by a small delta.

Livnat, Shen, and Johnson describe a new approach which
processes the cells into a 2D min-max span space [6]. Cells
are preprocessed into a Kd-tree which allows ����� � 	�� 
query time to determine the cells which intersect the contour,
where � is the size of the output. It is reported that in the
average case, � is the dominant factor, providing optimal
complexity. The same authors, with Hansen, have recently
described an advancement which demonstrates improved em-
pirical results by using an ����� lattice search decomposition
in span space, in addition to allowing for parallel implemen-
tation on a distributed memory architecture [13].

A similar approach to ours has been developed independently
by van Kreveld [16], in which seed sets are computed for
the specialized case of a triangular mesh in two dimensions
representing terrain for GIS applications. An interval tree is
used to perform the search for intersected seed cells, resulting
in worst-case complexity of ��� log � 	��� . Our approach
differs in the seed selection technique, which we generalize to
a cell complex of arbitrary topology, in addition to developing
a specialized simplification for regular grids.

In summary of the related work, isocontouracceleration tech-
niques attack the problem of minimizing the search phase by
forming a structure based either on the embedding space of
the geometric mesh or the 2D span space of the scalar field.
Characterizations of such approaches can be made based on
how well they handle noisy as well as smooth functions, and
whether the technique yields higher performance for consec-
utive isovalues which are close to one another.

Our approach is to initially extract a subset of cells � from
the given volume such that for any given isovalue # , every
connected component of the isocontour defined by # will
intersect a cell in � . The set of cells � are preprocessed
into a range search structure defined by the minimum and
maximum value of each seed cell. From this structure, cells
for a given isovalue can be extracted in ��� log ���
	 �� time.
From each selected cell, one or more connected components
of the isocontour are extracted by propagation through cell
adjacencies [4].

3 ALGORITHM OVERVIEW

The approach we take is based on the formalization and
unification of three known techniques. The three leading
ideas we are retaining are the following:
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1. The extraction of an isocontour does not require search-
ing all the cells of the mesh [5].

2. To improve the efficiency of the cell extraction, it is
necessary to define a search structure over the set of
cells [18].

3. The search space we need to work on is not the embed-
ding space of the original mesh but the two dimensional
span space [6].

Exploiting these three main ideas we get the following high
level sketch of an isocontouring algorithm:

1. (Preprocessing A)
Reduce the set of cells to a subset � that encompasses
at least one cell per connected component of each iso-
contour.

2. (Preprocessing B)
Construct an efficient search structure over the cells in
the set � .

3. (Step 1)
Given the scalar value # , perform a logarithmic search
on the set � to find all the cells in � which intersect the
isocontour of value # .

4. (Step 2)
For each cell � found in step 1, trace the entire connected
component of the isocontour intersected by � .

This approach allows us to obtain near-optimal worst case
time complexity along with an even better performance in
average non-perverse cases. If � is the size of the output and �
is the size of the input mesh, the worst case complexity we get
is ��� log � 	 �  . In practical cases we have observed a timing
that grows linearly with the size of the output, implying an
optimal average case complexity of � � �� .
The approach is applicable to any unstructured grid of cells
on which a scalar field is defined. The scalar field itself is
only assumed to be continuous. We only need a function

�

that, for each cell � in the mesh, returns the range
� ���. of

all possible values assumed by the field on that cell. On the
basis of this general framework, we then explore a simplified
version of the method where a regular 2D or 3D grid is
used as the mesh and the scalar field is approximated as a
piecewise linear function interpolating the values sampled
on the vertices of the mesh.

It is important to note how part A of the preprocessing is
strictly connected with step 2 of the isocontouring process.
In fact the cells that do not need to be stored in the set � are
the cells that can be captured during step 2 performed from
some cell in � . In the same way step B of the preprocessing
is coupled with step 1 of the contouring algorithm, as in

the former the search structure which is used in the latter is
constructed. Details of the general algorithm for seed set
construction will be described in the next section, followed
by a simplified approach devised for regular grids.

3.1 Contour Propagation

Extraction of 2D surfaces from 3D data by mesh propagation
is described by Speray and Kennon [15] for the case of arbi-
trary slices in unstructured meshes, while others have applied
similar techniques to isocontour extraction [1, 4, 5].

The central idea is that, given an initial cell which contains
the surface of interest, the remainder of the surface can be ef-
ficiently traced performing a breadth-first search in the graph
of cell adjacencies, as illustrated for a 2D contour extraction
in Figure 1. Use of a breadth-first search keeps the memory
requirements minimal, as only the “advancing front” of the
surface needs to be stored at any one time. One advantage
to using a propagation approach over other techniques is that
surfaces are easily transformed into a triangle strip represen-
tation for more efficient rendering [4]. Also of importance is
the fact that shared vertices between cells are more efficiently
located, as we are considering only a single closed contour
at any given time. In our implementation, carefully hashed
indexing of the advancing front allows us to efficiently elim-
inate recomputing intersections when the advancing front
closes on itself, completing the extraction of a connected
component. Similar to related caching techniques [1, 18],
the cache is made efficient by discarding entries which are
known to not be referenced again, based on the maximum
number of cells which share a given edge.

3.1.1 Cell Connectivity

Given such a contour propagation scheme, we can abstract
the concept to a cell connectivity graph defined in terms of
the scalar field defined on the mesh. In this way we can
easily determine a subset of the mesh cells from which all
the possible isocontours of the scalar field can be computed
using the given propagation scheme. Note that on the basis
of the defined propagation scheme the connectivity graph is
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FIGURE 1: Illustration of contour propagation
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FIGURE 2: Sweep process on the mesh space along the
	

direction. As the line sweeps the seeds are collected
(marked in the picture).

simply a labeled adjacency graph of the mesh cells. The use
of a different propagation scheme implies the construction of
a connectivity graph different from the adjacency graph. In
general, to define the connectivity graph we assume:

1. The function ��� 	 1 ������� � 	��  defining the scalar field of
our � -dimensional mesh is continuous.

2. All the cells of the mesh are connected.

3. A function
� � �  is available that, for any given cell �

of the mesh, returns the range of values assumed by �
over the domain of � . Note that, since � is continuous,
the range returned is always an interval

����� ��� ���
	
� .
4. For each pair of connected (adjacent) cells ��� 1 � � 2  , we

define a connecting interval:
� ��� ��� � ���
	 � ��� � � � 1 	�� ��� 2  such that if the cell � 1 ��� 2  is processed for a

value #�
 � ��� ��� � ��� 	 � � , then the cell � 2 ��� 1  will be
also processed for the same value # . This is essentially
the information we get from the contour propagation
scheme.

Based on the above information, we construct a labeled graph�
. For each cell � in the mesh, we have a node � in

�
that

is labeled
� � �  � ����� ��� ���
	
� . For each pair of connected

(adjacent) cells � � 1 � � 2  , there is an arc  in
�

connecting
� 1 to � 2 labeled

� ��� � ����� ��� � ���
	 � � . We name the arc 
because, with respect to the above propagation scheme, each
arc of

�
represents the facet  along which the cells � 1 and

� 2 are adjacent. In this case, the connecting interval of such
an arc is the range

� ��  of the scalar field � on such facet  .

With reference to the graph
�

, we define connectivity re-
lations between the nodes of the graph and hence between
the corresponding cells of the underlying mesh. All cells
which intersect the same connected component of a contour
of isovalue # we call # -connected. Formally we have the
following recursive definition:

Definition 1 Consider a scalar value # and two nodes � 1 � � 2

of
�

. � 1 and � 2 are said to be # -connected if one of the two
following conditions holds:

(a) � 1 and � 2 are connected by an arc  such that #�
 � ��  .
(b) There exists a node � 3 that is # -connected to both � 1

and � 2.

We can extend the concept of # -connectivity between pairs
of cells to the connectivity of a set of cells with respect to a
range of values.

Definition 2 Consider a subset � of the nodes of
�

and
a node ��
 �

. The node � is connected to � if, for any
#�
 � ���. , there exists a node � ��
 � that is # -connected to
� .

3.1.2 Seed Sets

We now characterize some particular subsets, called seed
sets, of the cells of a mesh in terms of the connectivity prop-
erties defined in the previous subsection. The seed sets are
important because any isocontour of the entire original mesh
can be traced by propagating from the cells of any seed set.

Definition 3 A subset � of the nodes of
�

is a seed set of
�

if all the nodes of
�

are connected to � .

If we wish to determine quickly all the cells of a mesh whose
range contains a particular scalar value # , we can proceed as
follows:

1. search for all the nodes ��
 � such that #�
 � ���. ;
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2. starting from the nodes we have found and using the # -
connectivity relation on the graph

�
(that is the contour

propagation scheme), we find all the cells of the mesh
whose range contains # .

To reduce the search time we need to reduce the cardinality
of the seed set � as much as possible. Toward this end we
will apply the following property:

Property 1 If � is a seed set and � 
 � is a cell connected
to � � � ��% , then � � � ��% is a seed set.

Proof: By hypothesis we have that � is connected to � ��� ��% .
Also, from Definition 1(b), we have that any cell which is
# -connected to � is also # -connected to some cell in � � � ��% .
Hence � � � ��% is a seed set. �
Property 1 provides us with a method to reduce the size of
a seed set. If we wish to find a small seed set, we can start
with the entire set of the cells – that is the largest seed set
– and keep removing cells until we achieve a minimal seed
set. Note that a minimal seed set is not the seed set with
the minimum number of cells but a seed set from which we
cannot remove any cell to obtain a new seed set.

The repeated application of Property 1 requires the knowl-
edge at each step of the connectivity relations within the
current seed set. Thus, we may start from the initial graph

�
.

At each step, we remove the selected cell � along with all its
incident arcs and add some new arcs between pairs of cells
that were connected to � to take into account the connectivity
relations induced by � on

� � � � % . In particular, if two cells
� 1 and � 2 are both connected to � with arcs  1 and  2, then the
removal of � requires also the removal of  1 and  2 and po-
tentially the insertion of a new arc  connecting � 1 to � 2. This
new arc  needs to be inserted if

� �� 1 �� � �� 2  ���� (a case
in which Definition 1(b) applies). If this condition is true,
then the new arc is added with label

��� � � �� 1  � � �� 2  .
If we proceed in this way, it becomes simple to determine
if Property 1 can be applied. We can remove a cell � of the
current seed set if: �

�
	�


1

� �� 	  � � ��� 

where  1 ������� � 
�

are all the arcs incident to the cell � in the
reduced graph of the current seed set.

Given this general reduction scheme, we still have freedom
to select the cells to be removed in any order. We can use
a greedy approach, removing first the cells that we consider
less likely to belong to a minimal seed set – for example the
cells that have narrower range. In this way we can assume
that the minimal seed set we achieve is not much larger than
the seed set with the minimum number of cells. On the

other hand, we can use this freedom to make the algorithm
as simple as possible (a very important property in actual
implementations).

A simple and efficient strategy for computing a small seed
set � is to apply a sweep in the grid space while maintaining
only the part

� � of the graph
�

relative to the cells of the grid
intersecting the sweep hyperplane (note that the complete
graph

�
does not need to be stored because it is equal to the

adjacency graph of the grid cells). For a 2D unstructured grid,
such as in Figure 2(a), the sweep hyperplane is a line parallel
to the � direction moving along the

	
direction. Figure 2(b)

shows the cells of the mesh that need to be represented in
� �

in thick outline. Those are the cells on which Property 1 is
being tested. The connectivity relations among cells on the
right of the sweep line (thin solid lines) do not need to be
stored in

� � because they are still like in
�

. The connectivity
relations among the cells on the left of the sweep line (thin
dotted lines) do not need to be stored in

� � since such cells
have already been discarded. Figure 2(c)-(d) shows how
during the sweep process the cells that cannot be discarded
are marked as seed cells.

In a regular grid the sweep process can be simply imple-
mented as a traversal of the grid by rows using a regular
marching scheme. In the following section we will examine
such a case in which we take a simplified approach special-
ized for 2D and 3D grids of regular topology. The technique
is applicable to both rectilinear and curvilinear grids as we
depend only on the topological structure of the grid.

3.2 Generating Seed Sets

In theory, the use of an ��� log �� search for seed points in
a seed set does not require that we extract a subset of the
cells: the complexity is no worse if we use the entire set.
In practice, because of the overhead of storing the search
structure for the entire set of cells, in addition to our ability to
propagate an isocontour from one cell to the next efficiently,
we are interested in constructing a small set of cells, with
the only requirement that each connected component of an
isocontour is represented in the selected set.

We introduce a simplification of the connectivity graph tech-
nique described in the previous section for determining a seed
set � . The simplification does not require that we store the
entire graph, but instead we maintain a subset of the infor-
mation from the graph which can be locally propagated from
cell to cell using simple rules when marching in a regular or-
der with temporary storage complexity of ������* + - 1 /,' +  . We
begin with all cells � in the set � . We associate with each
seed cell a computed range ��� �  , which represents the range
of values for which the given cell is a seed cell. Initially,
we have ��� �  � � ���  , the entire range of the cell, hence �
is a seed set. We present an incremental seed elimination
technique to reduce the seed set � . The reduction and re-
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FIGURE 3: Illustration of range propagation for a single cell

moval of seed cells is based on propagation of responsibility
ranges of isovalues. The information propagated from cell
to cell in marching order is a range � for each dimension of
the regular grid. An incoming range � represents the range
of values # for which responsibility has been propagated to
the current cell from the neighboring cells. The incoming
range is always a subset of the range of the shared face in the
direction of propagation. The complement of the incoming
range in the direction which varies fastest consists of values
# for which the current cell is # -connected to either � �  a
processed cell which remains in the seed set or � � �  an un-
processed cell to which responsibility for the value # has
been propagated. An outgoing range represents the respon-
sibility range which is propagated from the current cell to a
neighboring cell. Illustrated for the 2D case in Figure 3, the
marching order is � varying fastest, � varying slowest.

We describe the processing of a cell � at index � � ���1 in a
topologically regular grid of dimension � ��� � ���1 . Boundary
conditions are handled directly through the following nota-
tion, defined for simplicity:

1. ����
	� represents the range of the incoming face in the�
direction, where

�
is an arbitrary dimension.

2. ����� represents the incoming range propagated in the
�

direction. In the case of the boundary condition ��� 0,
we take ����� � � �� 	  .

3. ����� represents the complement of � ���  with respect
to the range �����	� of the shared face, or �����	��� ����� .
Note that the propagated range ������� �����	� .

4. ����
	��  represents the range of the outgoing shared face
in the

�
direction. In the boundary case when there is no

adjacent cell in the outgoing
�

direction ( � �4��	 � 2),
we assign ����
	��,�� � , indicating that no propagation
may occur in the given direction.

5. ���� �  represents the range propagated from the current
cell to the outgoing adjacent cell in the

�
direction.

We first compute the combined incoming range ����  , and
complement range ����  :

����  ��� ��� � �� � � 	   � � � �  � 1 
����1"��� � �� � �� ���� �   � ����1 � 2 

����  represents the subset of incoming isovalues which cell �

must either account for in the seed set � or defer responsibility
for by propagation through ��� 	 �  and ��� � �, . The subtraction
of ��� �  in Equation 1 above is justifiedbased on the algorithm
for range propagation presented below. For all # 
 � ���1 ,
there either exists a processed cell in � which is # -connected
to � or the value # has already been further propagated, and
hence #�
 � ���1 need not be considered in processing � . This
leads to the definition of ��� �  , representing the entire range
of values which make up the responsibility range of cell � .

��� �  � � � �  � � ���1 � 3 

For #�
 ��� �  , we must take care that � remains # -connected
to � in order to maintain the property that � is a seed set. We
also compute ����  , which represents the combined range of
isovalues which may be further propagated through outgoing
faces:

����  � ����
� � �� � ��
� �  � 4 

This leads to the following greedy algorithm for deferring
seed cell selection through propagation of responsibility.
Through the processing of a cell � , we maintain the invariant
that � is a seed set.

if (T � �  � T ��  ) then
� Cell � can be safely removed from � %
� �$� � �

� Propagate responsibility ranges %
T � 	 �  � T �� � �  � T � � 
T � � �, � T �� � �,�� � T � �  � T � 	 �  
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else � Cell � must remain in the seed set %
T ���. � T � � 
T � 	 �, � �
T � � �� � �

end

Proof: ( � remains a seed set after processing of cell � )

Case 1 ( � � �  � ����  ) - Recall that cell � is # -connected to
a processed seed cell for #�
 ����  . Through propagated
responsibility ranges, we have that � is # -connected to
the remaining (unprocessed) seed set for # 
 � � 	 �  ���� � �  � � ���� � �  � ��� �  � � � ���� � �  ��� ��� �  � ��� 	 �   � �
� � ��
� �  � ����
� �   � ��� �  � ����  � ��� �  � ��� �  �
� ���.�� ����  . Thus, � is connected to � ��� ��% , and by
Property 1, � � � ��% is also a seed set, maintaining the
invariant property.

Case 2 (Cell � remains in the seed set) - Cell � is trivially
# -connected to � for # 
 �����. � ��� �  � � � � 
� ����  .
From the input conditions,we have that � is # -connected
to a processed cell which remains in � for # 
 � ���1 .
Thus, � is # -connected to � for #�
 � ���  , maintaining
the invariant property that � is a seed set.

�

In the first case, the propagated range �����  includes the
responsibility range ��� �  in its entirety, and cell � is removed
from the seed set � . The responsibility range is propagated
through the outgoing faces by the computation of � � 	 �  and��� � �  . Note that the propagated ranges are disjoint and that
the preference is to propagate the range in the � direction. It
is this preference which allows us to remove ��� �  in equation
(1). For all # 
 ��� �  , the associated # -connected component
is either accounted for by a processed cell in the seed set
� , or responsibility has been propagated to an unprocessed
cell, hence # need not be considered for the current cell.
The same cannot be said for ��� 	  , because the precedence
of propagation indicates that responsibility for values # 
��� 	  may, through some path of responsibility propagation,
ultimately be propagated through ��� �  . Consider the case of
Figure 3, and suppose that the value

�
is a local minimum.

Values # 
 ��� 	  overlap with the range ��� �  , providing
incoming information which appears to conflict. In fact we
cannot make use of the range � ���  , where � is other than the
direction which varies fastest in the marching order.

The second case above occurs when cell � cannot propagate
the entire incoming range. Cell � remains in the set � , though�����  is reduced to exclude the complement ranges which
have been propagated elsewhere. In this case the empty set
is propagated to outgoing edges, indicating that all values on
shared faces are accounted for in the seed set � .

As described above, the range propagation method for se-
lecting seed cells requires ��� ��*,+.- 1 / ' +� storage to maintain
the propagated ranges for a sweeping line or plane in 2D
or 3D. Note that our use of range subtraction may result
in ranges with two disconnected components. In practice,
disconnected ranges may either be maintained or closed by
taking the smallest range which contains the entire discon-
nected range. Maintaining the disconnected range effectively
requires that multiple seeds be processed into the search struc-
ture, increasing the number of seeds, while merging discon-
nected ranges simply means that two or more cells which are
# -connected may be selected for inclusion in the seed set � .
Of course, this greedy technique does not guarantee otherwise
in the case that disconnected ranges are maintained. In our
implementation, we maintain disconnected ranges through
the seed cell selection, closing each range which is ultimately
selected to remain in the seed set � . In practice the number of
seed cells with disconnected ranges does not exceed 10% of
the seed cells, and the number of seed cells does not exceed
10% of the data, as presented in the results in Section 4.

Results for a 2D regular mesh are illustrated in Figure 4.
The relatively smooth function is sampled on a grid of size
64 � 64. Figure 4 (upper) shows the 206 seed cells chosen by
the marching seed selection method. Figure 4 (lower) shows
the decrease to 56 seed cells which is achieved using a more
sophisticated method currently under development. Our pre-
liminary results on small datasets have shown decreases in
 �  by factors ranging from 2.5 (noisy 2D MRI) to 20 (3D
SOD data presented in the results section) over the marching
seed selection method which is in current use, however the
current implementation of the more sophisticated selection
algorithm is too computationally expensive to be considered
practical.

3.3 Range Queries

In this brief section we analyze the problem of selecting all the
cells of a given set � whose range contains an assigned value
# . This problem is independent from the characteristics of
the set � that can be the entire set of the mesh cells or any
subset, e.g. a seed set. The important aspect to focus on is
the selection criterion.

A cell � of � is selected iff #�
 R � �  .

To achieve a good search scheme, it is important to de-
fine what our search space is. As observed in [2], we do
not need to search for the required cells in the embedding
space of the cells since we select them only considering their
range. In [6], the two dimensional span space is considered
the search space, where each cell is represented by a point
whose coordinates are the two extremes

����� ��� ���
	
� of the
cell range. The search complexity achieved with a � 0 �������	�
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FIGURE 4: Results of two seed selection
techniques

in this way is ��� � � 	 �� where � is the number of cells in
� and � is the number of cells reported (also in this case �
encompasses all the cells in the mesh and is not reduced to
a seed set). We want to go a step further and notice that the
range of a cell is not simply defined by a pair of numbers
(to be mapped to 2D points) but is actually an interval that
can be mapped to the 1D line. That is, we assume as search
space a set of 1D segments instead of a set of 2D points. In
this way we can use well known search structures such as
the segment tree (see e.g. [9] or [10]) or the interval tree, a
specific case of a priority search tree [8]. Examples of each
search tree are given in figure 5 for a small set of intervals
and briefly discussed in the following paragraphs.

In a segment tree, the set of
��� � and

���
	
values of the seg-

ments are simply sorted (along the 1D line), and a standard
binary search tree is constructed over them. Additional infor-
mation is then stored in each node of the tree. If a node

�
is the

root of a subtree that spans values in the range
����� ���
� ���
	 � �

and a cell � has a range that contains
����� ���
� ���
	 � � , then the

node
�

contains the label � . With such a structure, determin-
ing the cells which span a given value # is achieved through
a binary search for the # in the tree. During traversal of the
tree, all labels stored in visited nodes are collected. They
are the labels of all cells whose range contains # . The time
complexity achieved is � � log ����	 �� in the case that all ���
cells have distinct

��� � and
���
	

values, while the storage
complexity is ��� ��� log ���, . These are worst case bounds, and
may improve in the special case that the number of distinct
values is limited, as discussed in the results in Section 4.

In an interval tree, each node holds a split value � , and each
interval is classified as less than (

���
	�� � ), greater than
(
��� ��� � ), or spanning (

��� � � � � ���
	 ). Intervals which
span � are stored in a node in the tree, while intervals which
are entirely less than (greater than) � are recursed into the left
(right) subtrees. Within each node, the intervals are sorted
into two lists, the first sorted by increasing

��� � value, and the
second by decreasing

��� 	
value. The storage complexity of

the interval tree is ������ as each interval is stored two times.
A query for an isovalue # consists of performing a search for
# based on the split values. At each node, one of the two lists
is traversed, depending on whether # is less than or greater
than � . If # � � , the

��� � -sorted list is searched to determine
cells with

��� � � # , and the traversal continues with the
left subtree. If #�� � , the

���
	
-sorted list is searched, and

traversal continues with the right subtree. Intersected cells
will always appear at the left of the lists due to their sorted
order.

4 RESULTS

Results were computed on a Silicon Graphics Indigo2 IM-
PACT with 128Mb memory and one 250Mhz R4400 pro-
cessor. The search structure used in these examples was the
segment tree.

Table 1 provides characteristics of our test data suite, as well
as statistics for the preprocessing stage of the algorithm. Ex-
amination of the percentage of cells which remain in the seed
set reveals that the set � is one to two orders of magnitude
smaller than the entire set of cells for practical real data. This
observation is very important because the number of seed
cells ��� represents the search overhead of ��� log ���  for the
segment tree, indicating that in practical situations the dom-
inant complexity will be ������ , where � is the size of the
output. We make special note of the number of distinct seed
values (min or max), because the height of the segment tree
is dependent on this number alone. For the case of scalar
data which take on a limited number of values, such as 8-bit
integer or quantized floating point values, the � � log � �  is
effectively made into a constant, resulting in an optimal time
complexity of ��� �  as well a segment tree storage complexity
of � � ���, .
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FIGURE 5: Segment tree (a) and Interval Tree (b) for the set of ranges (c)

Table 2 gives timing results on volume datasets of various
sizes, with comparison to a brute force Marching Cubes ap-
proach. Times are reported in seconds and include computa-
tion of the isosurface and storage in an internal data structure.
Images of each contour can be found in the color plates.

Evident in the data collected is the fact that the algorithm
scales approximately linearly with respect to the number of
triangles computed (or the number of cells intersected by the
surface). In our implementation, performance ranges from
45K triangles/second to 97K triangles/sec, while the brute
force approach has widely varying performance, from 2K
triangles/sec to 40K triangles/sec. Figure 6 shows the actual
performance in triangles/sec for multiple isovalue queries for
the SOD dataset, demonstrating a performance which scales
linearly with the number of triangles in the output. Using
the same isovalues for the SOD data, Figure 7 compares our
speedup (over traditional Marching Cubes) with the volume
fraction, measured in triangles/cell. Evident from the plot
is that our algorithm provides the greatest speedup when the
surface of interest is small compared to the volume. This is
consistent with the notion that for small numbers of triangles,
the exhaustive search dominates the triangulation time.

5 CONCLUSIONS

We have presented a fast algorithm for computing isocon-
tours from scalar volume data. Observed average complex-
ity is ��� �  , where � is the number of cells intersected by the
contour. In the worst case (log ��� � � ), the limiting factor
becomes the search.

The importance of linearity with respect to the number of
cells intersected by an isocontour cannot be overstated. With
the ever-increasing size of volumetric data, contouring tech-
niques which search the entire space grow with the size of the
volume. Using the method we have presented, an increase
in the size of the input results in an increase in computation

on the order of the dimensionality of the contour. The result
is that larger volumes which were prohibitive using less effi-
cient algorithms are now accessible to the visualization user.
For intermediate size volumes, the increased performance
results in true interactive computation, allowing the visual-
ization user to explore volumetric data, modifying isovalues
and viewing the results in real-time, on desktop devices.
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