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Summary. Increases in the number and size of volumetric meshes have popularized the use
of hierarchical multi-resolution representations for visualization. A key component of these
schemes has become the adaptive traversal of hierarchical data-structures to build, in real
time, approximate representations of the input geometry for rendering. For very large datasets
this process must be performed out-of-core. This paper introduces a new global indexing
scheme that accelerates adaptive traversal of geometric data represented with binary trees by
improving the locality of hierarchical/spatial data access. Such improvements play a critical
role in the enabling of effective out-of-core processing.

Three features make the scheme particularly attractive: (i) the data layout is independent
of the external memory device blocking factor, (ii) the computation of the index for rectilinear
grids is implemented with simple bit address manipulations and (iii) the data is not replicated,
avoiding performance penalties for dynamically modified data.

The effectiveness of the approach was tested with the fundamental visualization tech-
nique of rendering arbitrary planar slices. Performance comparisons with alternative indexing
approaches confirm the advantages predicted by the analysis of the scheme.

1.1 Introduction

The real time processing of very large volumetric meshes introduces unique algorithmic chal-
lenges due to the impossibility of fitting the data in the main memory of a computer. The basic
assumption (RAM computational model) of uniform-constant-time access to each memory
location is not valid because part of the data is stored out-of-core or in external memory. The
performance of many algorithms does not scale well in the transition from the in-core to the
out-of-core processing conditions. This performance degradation is due to the high frequency
of I/O operations that start dominating the overall running time (trashing).

Out-of-core computing [22] addresses specifically the issues of algorithm redesign and
data layout restructuring, necessary to enable data access patterns with minimal out-of-core
processing performance degradation. Research in this area is also valuable in parallel and
distributed computing, where one has to deal with the similar issue of balancing processing
time with data migration time.

The solution of the out-of-core processing problem is typically divided into two parts:
(i) algorithm analysis to understand its data access patterns and, when possible, redesign

to maximize their locality;
(ii) storage of the data in secondary memory with a layout consistent with the access

patterns of the algorithm, amortizing the cost individual I/O operations over several memory
access operations.

In the case of hierarchical visualization algorithms for volumetric data, the 3D input hi-
erarchy is traversed to build derived geometric models with adaptive levels of detail. The
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shape of the output models are then modified dynamically with incremental updates of their
level of detail. The parameters that govern this continuous modification of the output geom-
etry are dependent on runtime user interaction, making it impossible to determine, a priori,
what levels of detail will be constructed. For example, parameters can be external, such as
the viewpoint of the current display window or internal, such as the isovalue of an isocontour
or the position of an orthogonal slice. The general structure of the access pattern can be sum-
marized into two main points: (i) the input hierarchy is traversed coarse to fine, level by level
so that the data in the same level of resolution is accessed at the same time and (ii) within
each level of resolution the data is mainly traversed coherently in regions that are in close
geometric proximity.

In this paper we introduce a new static indexing scheme that induces a data layout satisfy-
ing both requirements (i) and (ii) for the hierarchical traversal of �-dimensional regular grids.
The scheme has three key features that make it particularly attractive. First, the order of the
data is independent of the out-of-core blocking factor so that its use in different settings (e.g.
local disk access or transmission through a network) does not require any large data reorga-
nization. Second, conversion from the standard Z-order indexing to the new indexing scheme
can be implemented with a simple sequence of bit-string manipulations making it appealing
for a possible hardware implementation. Third, there is no data replication, avoiding any per-
formance penalty for dynamic updates or any inflated storage typical of most hierarchical and
out-of-core schemes.

Beyond the theoretical interest in developing hierarchical indexing schemes for �-dimen-
sional space filling curves, our approach targets practical applications in out-of-core visual-
ization algorithms. In this paper, we report algorithmic analysis and experimental results for
the case of slicing large volumetric datasets.

The remainder of this paper is organized as follows. Section 1.2 discusses briefly previ-
ous work in related areas. Section 1.3 introduces the general framework for the computation
of the new indexing scheme. Section 1.4 discusses the implementation of the approach for
binary tree hierarchies. Section 1.5 analyzes the application of the scheme for progressive
computation of orthogonal slices reporting experimental timings for memory mapped files.
Section 1.6 presents the structure of the I/O system and practical results obtained with com-
pressed data. Concluding remarks and future directions are discussed in section 1.7.

1.2 Related Previous Work

External memory algorithms [22], also known as out-of-core algorithms, have been rising to
the attention of the computer science community in recent years as they address, systemat-
ically, the problem of the non-uniform memory structure of modern computers (e.g. L1/L2
cache, main memory, hard disk, etc). This issue is particularly important when dealing with
large data-structures that do not fit in the main memory of a single computer since the ac-
cess time to each memory unit is dependent on its location. New algorithmic techniques
and analysis tools have been developed to address this problem in the case of geometric al-
gorithms [1,2,9,15] and scientific visualization [4,8]. Closely related issues emerge in the
area of parallel and distributed computing where remote data transfer can become a primary
bottleneck in the computation. In this context space filling curves are often used as a tool
to determine, very quickly, data distribution layouts that guarantee good geometric local-
ity [10,18,20]. Space filling curves [21] have been also used in the past in a wide variety
of applications [3] because of their hierarchical fractal structure as well as for their well
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Fig. 1.1. (a-e) The first five levels of resolution of the 2D Lebesgue’s space filling
curve. (f-j) The first five levels of resolution of the 3D Lebesgue’s space filling
curve.

known spatial locality properties. The most popular is the Hilbert curve [11] which guaran-
tees the best geometric locality properties [19]. The pseudo-Hilbert scanning order [7,6,12]
generalizes the scheme to rectilinear grids that have different number of samples along each
coordinate axis.

Recently Lawder [13,14] explored the use of different kinds of space filling curves to
develop indexing schemes for data storage layout and fast retrieval in multi-dimensional
databases.

Balmelli at al. [5] use the Z-order (Lebesque) space filling curve to navigate efficiently a
quad-tree data-structure without using pointers.

In the approach proposed here a new data layout is used to allow efficient progressive
access to volumetric information stored in external memory. This is achieved by combining
interleaved storage of the levels in the data hierarchy while maintaining geometric proximity
within each level of resolution (multidimensional breadth first traversal). One main advan-
tage is that the resulting data layout is independent of the particular adaptive traversal of the
data. Moreover the same data layout can be used with different blocking factors making it
beneficial throughout the entire memory hierarchy.

1.3 Hierarchical Subsampling Framework

This section discusses the general framework for the efficient definition of a hierarchy over
the samples of a dataset.

Consider a set � of � elements decomposed into a hierarchy � of � levels of resolution
� � ���� ��� � � � � ����� such that:

�� � �� � � � � � ���� � �
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where �� is said to be coarser than �� if � � �. The order of the elements in � is defined by
a cardinality function 	 � � � �� � � � � � ��. This means that the following identity always
holds:

��	�
�� � 


where square brackets are used to index an element in a set.
One can define a derived sequence �� of sets ��� as follow:

��� � ��	���� � � �� � � � � � � �

where formally ��� � 
. The sequence �� � ����� ���� � � � � ������ is a partitioning of ��
A derived cardinality function 	� � � � �� � � � � � �� can be defined on the basis of the
following two properties:

� �
� � 
 ��� � 	
��
� � 	 ����� 	�
� � 	���	

� �
 
 ���� �� 
 ��� � � � � � 	 ��
� � 	 �����

If the original function 	 has strong locality properties when restricted to any level of res-
olution �� then the cardinality function 	� generates the desired global index for hierarchical
and out-of-core traversal. The scheme has strong locality if elements with with close index
are also close in geometric position. This locality properties are well studied in [17].

The construction of the function can be achieved in the following way: (i) determine the
number of elements in each derived set ��� and (ii) determine a cardinality function 	��� �
	 ����

�

restriction of 	 � to each set ���. In particular if �� is the number of elements of ��� one
can predetermine the starting index of the elements in a given level of resolution by building
the sequence of constants 
�� � � � � 
��� with


� �

����
���

�� � (1.1)

Next, one must determine a set of local cardinality functions 	��� � ��� � �� � � � �� � �� so
that:

�
 
 ��� � 	
��
� � 
� 
 	 ��� �
�� (1.2)

The computation of the constants 
� can be performed in a preprocessing stage so that the
computation of 	� is reduced to the following two steps:

� given 
 determine its level of resolution � (that is the � such that 
 
 ����	
� compute 	��� �
� and add it to 
��

These two steps must be performed very efficiently as they will be executed repeatedly at run
time. The following section reports a practical realization of this scheme for rectilinear cube
grids in any dimension.
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Fig. 1.2. The nine levels of resolution of the binary tree hierarchy defined by the
2D space filling curve applied on �� � �� rectilinear grid. The coarsest level of
resolution (a) is a single point. The number of points that belong to the curve at any
level of resolution (b-i) is double the number of points of the previous level.

1.4 Binary Trees And the Lebesgue Space Filling Curve

This section reports the details on how to derive from the Z-order space filling curve the local
cardinality functions 	��� for a binary tree hierarchy in any dimension and its remapping to the
new index 	�.

1.4.1 Indexing the Lebesgue Space Filling Curve

The Lebesgue space filling curve, also called Z-order space filling curve for its shape in the 2D
case, is depicted in figure 1.1(a-e). The Z-order space filling curve can be defined inductively
by a base Z shape of size � (figure 1.1a) whose vertices are replaced each by a Z shape of size
�

�
(figure 1.1b). The vertices obtained are then replaced by Z shapes of size �

�
(figure 1.1c)

and so on. In general, the ��� level of resolution is defined as the curve obtained by replacing
the vertices of the ������� level of resolution with Z shapes of size �

��
. The 3D version of this

space filling curve has the same hierarchical structure with the only difference that the basic
Z shape is replaced by a connected pair of Z shapes lying on the opposite faces of a cube as
shown in Figure 1.1(f). Figure 1.1(f-j) show five successive refinements of the 3D Lebesgue
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space filling curve. The �-dimensional version of the space filling curve has also the same
hierarchical structure, where the basic shape (the Z of the 2D case) is defined as a connected
pair of �����-dimensional basic shapes lying on the opposite faces of a �-dimensional cube.

The property that makes the Lebesgue’s space filling curve particularly attractive is the
easy conversion from the � indices of a �-dimensional matrix to the 1D index along the
curve. If one element � has �-dimensional reference ���� � � � � ��� its 1D reference is built by
interleaving the bits of the binary representations of the indices ��� � � � � ��. In particular if ��
is represented by the string of � bits �����

�

� � � � ��� 
 (with � � �� � � � � �) then the 1D reference
	 of � is represented the string of �� bits 	 � �����

�

� � � � ��������� � � � ��� � � � ��� ��� � � � ���
.

level 0 1 2 3 4
Z-order index (2 levels) 0 1
Z-order index (3 levels) 0 2 1 3
Z-order index (4 levels) 0 4 2 6 1 3 5 7
Z-order index (5 levels) 0 8 4 12 2 6 10 14 1 3 5 7 9 11 13 15
hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1.1. Structure of the hierarchical indexing scheme for binary tree combined
with the order defined by the Lebesgue space filling curve.

The 1D order can be structured in a binary tree by considering elements of level �, those
that have the last � bits all equal to 0. This yields a hierarchy where each level of resolution
has twice as many points as the previous level. From a geometric point of view this means
that the density of the points in the �-dimensional grid is doubled alternatively along each
coordinate axis. Figure 1.2 shows the binary hierarchy in the 2D case where the resolution of
the space filing curve is doubled alternatively along the � and � axis. The coarsest level (a) is
a single point, the second level (b) has two points , the third level (c) has four points (forming
the Z shape) and so on.

1.4.2 Index Remapping

The cardinality function discussed in section 1.3 for a binary tree case has the structure shown
in table 1.1. Note that this is a general structure suitable for out-of-core storage of static binary
trees. It is independent of the dimension � of the grid of points or of the Z-order space filling
curve.

The structure of the binary tree defined on the Z-order space filling curve allows one to
easily determine the three elements necessary for the computation of the cardinality. They
are: (i) the level � of an element, (ii) the constants 
� of equation (1.1) and (iii) the local
indices 	��� .

� - if the binary tree hierarchy has � levels then the element of Z-order index � in the �-
order belongs to the level � � �, where � is the number of trailing zeros in the binary
representation of �;
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Loop: While the outgoing bit is zero

Incoming bit Outgoing bit
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0 0 1 0 0 1 0 1 1 0� 1
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(a) (b)

Step 1: shift right with incoming bit set to 1

shift right with incoming bit set to 0

Fig. 1.3. (a) Diagram of the algorithm for index remapping from Z-order to the hi-
erarchical out-of-core binary tree order. (b) Example of the sequence of shift opera-
tions necessary to remap an index. The top element is the original index the bottom
is the output remapped index.


� - the total number of elements in the levels coarser than �, with � � �, is 
� � ���� with

� � �;

	 ��� - if an element has index � and belongs to the set ��� then �

����
must be an odd number,

by definition of �. Its local index is then:

	 ��� ��� �

�
�

������

�
�

The computation of the local index 	��� can be explained easily by looking at the bottom
right part of table 1.1 where the sequence on indices (1 , 3 , 5 , 7 , 9 , 11 ,13 ,15) needs to
be remapped to the local index (0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ). The original sequence is made of a
consecutive series of odd numbers. A right shift of one bit (or rounded division by two) turns
them into the desired sequence.

These three elements can be put together to build an efficient algorithm that computes the
hierarchical index 	��
� � 
� 
 	 ��� �
� in the two steps shown in the diagram of Figure 1.3:

1. set to 1 the bit in position � 
 �;
2. shift to the right until a 1 comes out of the bit-string.

Clearly this diagram could have a very simple and efficient hardware implementation. The
software C++ version can be implemented as follows:

inline adhocidex remap(register adhocindex i){
i |= last_bit_mask; // set leftmost one
i /= i&-i; // remove trailing zeros
return (i>>1); // remove rightmost one

}

This code would work only on machines with two’s complement representation of numbers.
In a more portable version one needs to replace i /= i&-i with i /= i&((˜i)+1).

Figure 1.4 shows the data layout obtained for a 2D matrix when its elements of are
reordered following the index 	�. The data is stored in this order and divided into blocks of
constant size. The inverse image of such decomposition has the first block corresponding to
the coarsest level of resolution of the data. The following blocks correspond to finer and finer
resolution data that is distributed more and more locally.
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Fig. 1.4. Data layout obtained for a 2D matrix reorganized using the index 	� (1D
array at the top). The inverse image of the block decomposition of the 1D array
is shown below. Each gray region shows where the block of data is distributed in
the 2D array. In particular the first block is the set of coarsest levels of the data
distributed uniformly on the 2D array.The next block is the next level of resolution
still covering the entire matrix. The next two levels are finer data covering each half
of the array. The subsequent blocks represent finer resolution data distributed with
increasing locality in the 2D array.

1.5 Computation of Planar Slices

This section presents some experimental results based on the simple, fundamental visual-
ization technique of computing orthogonal slices of a 3D rectilinear grid. The slices can be
computed at different levels of resolution to allow real time user interactivity independent of
the size of the dataset. The data layout proposed here is compared with the two most common
array layouts: the standard row major structure and the ����� brick decomposition of the
data. Both practical performance tests and complexity analysis lead to the conclusion that the
data layout proposed allows one to achieve substantial speedup both when used at coarse res-
olution and traversed in a progressive fashion. Moreover no significant performance penalty
is observed if used directly at the highest level of resolution.

1.5.1 External Memory Analysis for Axis-Orthogonal Slices

The out-of-core analysis reports the number of data blocks transferred from disk under the
assumption that each block of data of size � is transferred in one operation independently of
how much data in the block is actually used. At fine resolution the simple row major array
storage achieves the best and worst performances depending on the slicing direction. If the
overall grid size is � and the size of the output is �, then the best slicing direction requires one
to load ������ data blocks (which is optimal) but the worst possible direction requires one
to load ���� blocks (for � � �� �

�
��). In the case of simple �� �� � data blocking (which

has best performance for � � �
�
�) the number of blocks of data loaded at fine resolution

are �� �
��
��
�. Note that this is much better than the previous case because the performance

is close to (even if not) optimal, and independent of the particular slicing direction. For a
subsampling rate of � the performance degrades to �� ���

��
��
� for � � �

�
�. This means that

at coarse subsampling, the performance goes down to ����. The advantage of the scheme
proposed here is that independent of the level of subsampling, each block of data is used for a
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Fig. 1.5. Maximum data loaded from disk (vertical axis) per slice computed depending on
the level of subsampling (horizontal axis) for an 8G dataset. (a) Comparison of the brick de-
composition with the binary tree with Z-order remapping scheme proposed here. The values
on the vertical axis are reported in logarithmic scale to highlight the difference in orders of
magnitude at any level of resolution.

portion of �
�
�� so that, independently of the slicing direction and subsampling rate, the worst

case performance is �� �
��
��
�. This implies that the fine resolution performance of the scheme

is equivalent to the standard blocking scheme while at coarse resolutions it can get orders of
magnitude better. More importantly, this allows one to produce coarse resolution outputs at
interactive rates independent of the total size of the dataset.

A more accurate analysis can be performed to take into account the constant factors that
are hidden in the big � notation and determine exactly which approach requires one to load
into memory more data from disk. We can focus our attention to the case of a 8GB dataset
with disk pages on the order of 32KB each as shown in diagram of Figure 1.5. One slice of
data is 4MB in size. In the brick decomposition case, one would use �� � �� � �� blocks
of 32KB. The data loaded from disk for a slice is 32 times larger than the output, that is
128MB bytes. As the subsampling increases up to a value of 32 (one sample out of 32) the
amount of data loaded does not decrease because each ��� ��� �� brick needs to be loaded
completely. At lower subsampling rates, the data overhead remains the same: the data loaded
is 32768 times larger than the data needed. In the binary tree with Z-order remapping the
data layout is equivalent to a ��-tee constructing the same subdivision of an octree. This
maps on the slice to a ��-tree with the same decomposition as a quadtree. The data loaded
is grouped in blocks along the hierarchy that gives an overhead factor in number of blocks of
� 
 �

�

 �

�

 �

��

 � � � � � while each block is 16KB. This means that the total amount of

data loaded at fine resolution is the same. If the block size must be equal to 32KB the data
located would twice as much as the previous scheme. The advantage is that each time the
subsampling rate is doubled the amount of data loaded from external memory is reduced by
a factor of four.

1.5.2 Tests with Memory Mapped Files

A series of basic tests were performed to verify the performance of the approach using a
general purpose paging system. The out-of-core component of the scheme was implemented
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Fig. 1.6. Two comparisons of slice computation times of four different data layout schemes.
The horizontal axis is the level of subsampling of the slicing scheme (test at the finest reso-
lution are on the left).

simply by mapping a 1D array of data to a file on disk using the mmap function. In this way
the I/O layer is implemented by the operating system virtual memory subsystem, paging in
and out a portion of the data array as needed. No multi-threaded component is used to avoid
blocking the application while retrieving the data. The blocks of data defined by the system
are typically 4KB. Figure 1.6(a) shows performance tests executed on a Pentium III Laptop.
The proposed scheme shows the best scalability in performance. The brick decomposition
scheme with ��� chunks of regular grids shows the next best compromise in performance.
The ��� �� �� row major storage scheme has the worst performance compromise because of
its dependency on the slicing direction: best for ��� �� plane slices and worst for ��� �� plane
slices. Figure 1.6(b) shows the performance results for a test on a larger, 8GB dataset, run on
an SGI Octane. The results are similar.

1.6 Budgeted I/O and Compressed Storage

A portable implementation of the indexing scheme based on standard operating system I/O
primitives was developed for Unix and Windows. This implementation avoids several ap-
plication level usability issues associated with the use of mmap. The implemented memory
hierarchy consists of a fixed size block cache in memory and a compressed disk format with
associated meta-data. This allows for a fixed size runtime memory footprint, required by
applications.

The input to this system is a set of sample points, arbitrarily located in space (in our
tests, these were laid out as a planar grid) and their associated level in the index hierarchy.
Points are converted into a virtual block number and a local index using the hierarchical Z
order space filling curve. The block number is queried in the cache. If the block is in the
cache, the sample for the point is returned, otherwise, an asynchronous I/O operation for that
block is added to an I/O queue and the point marked as pending. Point processing continues
until all points have been resolved (including pending points) or the system exceeds a user
defined processing time limit. The cache is filled asynchronously by I/O threads which read
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Fig. 1.7. Average slice computation time for ���� sample slices on a Linux laptop with a Intel
Pentium III at 500Mhz using a 20MB fixed data cache. Results are given for two different
plane access patterns R1 and T2 as well as three different data layouts BIT, BLK and ARR.
The input data grid was ����� ���� � ����.

compressed blocks from disk, decompress them into the cache, and resolve any sample points
pending on that cache operation.

The implementation was testing using the same set of indexing schemes noted in the
previous section: (BIT) our hierarchical space filling curve, (BLK) decomposition of the data
in cubes of size equal to the disk pages and (ARR) storage of the data as a standard row major
array. The dataset was one 8GB (���� � ���� � ����) time-step of the PPM dataset [16]
shown in Figure 1.11 (same results were achieved with the visible female dataset shown in
Figure 1.12). Since the dataset was not a power of two so it was conceptually embedded in
a ����� grid and reordered. The resulting 1D array was blocked into 64KB segments and
compressed using zlib. Entirely empty blocks resulting from the conceptual embedding were
not stored as they would never be accessed. The re-ordered, compressed data was around 6
percent of the original dataset size, including the extra padding.

Two different slicing patterns were considered. Test R1 is a set of one degree rotations
over each primary axis. Test T1 is a set of translations of the slice plane parallel to each
primary axis, stepping throught every slice sequentially. Slices were sampled at various levels
of sampling resolution.

In the baseline test on a basic PC platform, shown in Figure 1.7, with a very limited cache
allocation, the proposed indexing scheme was clearly superior (by orders of magnitude), par-
ticularly as the sampling factor was increased. Our scheme allows one to maintain real-time
interaction rates for large datasets using very modest resources (20MB).

We repeated the same test on an SGI Onyx2 system with higher performance disk ar-
rays, the results are shown in Figure 1.8. The results are essentially equivalent, with slightly
better performance being achived at extreme sampling levels on the SGI. Thus, the even the
hardware requirements for the algorithm are very conservative.

To test the scalability of the algorithm, we ran tests with increased output slice size and
input volume sizes. When the number of slice samples was increased by a factor of four
(Figure 1.9) we note that our BIT scheme is the only one that scales running times linearly
with the size of the output for subsampling rates of two or higher.



12 Valerio Pascucci and Randall J. Frank

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32 64

A
ve

ra
ge

 S
lic

e 
C

om
pu

ta
tio

n 
T

im
e 

(s
)

Subsampling Rate

R1-BIT
R1-BLK
R1-ARR

T1-BIT
T1-BLK
T1-ARR

Fig. 1.8. Average slice computation time for ���� sample slices on an SGI Onyx2 with
300Mhz MIPS R12000 CPUs using a 20MB fixed data cache. Results are given for two
different plane access patterns R1 and T2 as well as three different data layouts BIT, BLK
and ARR. The input data grid was ���� � ���� � ����.
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Fig. 1.9. Average slice computation time for ����� sample slices on an SGI Onyx2 with
300Mhz MIPS R12000 CPUs using a 20MB fixed data cache. Results are given for two
different plane access patterns R1 and T2 as well as three different data layouts BIT, BLK
and ARR. The input data grid was ���� � ���� � ����.

Finally, a 0.5TB dataset (���� � ���� � ���� grid) formed by replicating the 8GB
timestep 64 times was run on the same SGI Onyx2 system using a larger 60MB memory
cache. Results are shown in Figure 1.10. Interactive rates are certainly achievable using our
indexing scheme on datasets of this extreme size and are very comparable to those obtained
for a the ��� grid case (Figure 1.8) with this scheme.

Overall, results generally parallel those illustrated in the mmap experiments. Major differ-
ences stem from the increases in access time caused by the use of computationally expensive
compression schemes and the potential for cache thrashing caused by the selection of (rela-
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Fig. 1.10. Average slice computation time for ���� sample slices on an SGI Onyx2 with
300Mhz MIPS R12000 CPUs using a 60MB fixed data cache. Results are given for two
different plane access patterns R1 and T2 as well as three different data layouts BIT, BLK
and ARR. The input data grid was ���� � ���� � ����.

tively) small local cache sizes, particularly with schemes lacking the degree of data locality
provided by our scheme.

1.7 Conclusions and Future Directions

This paper introduces a new indexing and data layout scheme that is useful for out-of-core
hierarchical traversal of large datasets. Practical tests and theoretical analysis for the case
of multi-resolution slicing of rectilinear grids illustrate the performance improvements that
can be achieved with this approach, particularly within the context of a progressive computa-
tional framework. For example we can translate and rotate planar slices of an 8k cubed grid
achieving half-second interaction rates. In the near future this scheme will be used as the ba-
sis for out-of-core volume visualization, computation of isocontours and navigation of large
terrains.

Future directions being considered include integration with wavelet compression schemes,
the extension to general rectangular grids, distributed memory implementations and applica-
tion to non-rectilinear hierarchies.
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5. L. Balmelli, J. Kovačević, and M. Vetterli. Quadtree for embedded surface visualization:
Constraints and efficient data structures. In IEEE International Conference on Image
Processing (ICIP), pages 487–491, Kobe Japan, October 1999.

6. Y. Bandou and S.-I. Kamata. An address generator for a 3-dimensional pseudo-hilbert
scan in a cuboid region. In International Conference on Image Processing, ICIP99,
volume I, 1999.

7. Y. Bandou and S.-I. Kamata. An address generator for an n-dimensional pseudo-hilbert
scan in a hyper-rectangular parallelepiped region. In International Conference on Image
Processing, ICIP 2000, 2000. to appear.
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