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Abstract

For �D or �D meshes that represent a continuous function to
the reals� the contours�or isosurfaces�of a speci�ed value
are an important way to visualize it� To �nd such contours�
a seed set can be used for the starting points from which
the traversal of the contours can start� This paper gives the
�rst methods to obtain seed sets that are provably small in
size� They are based on a variant of the contour tree �or
topographic change tree�� We give a new� simple algorithm
to compute such a tree in regular and irregular meshes that
requires O�n log n� time in �D for meshes with n elements�
and in O�n�� time in higher dimensions� The additional
storage overhead is proportial to the maximum size of any
contour �linear in the worst case� but typically less�� Given
the contour tree� a minimum size seed set can be computed
in polynomial time and storage� Since in practice at most
linear storage is allowed� we develop a simple approximation
algorithm giving a seed set of size at most twice the size of
the minimum� It requires O�n log� n� time in �D and O�n��
time otherwise� and requires linear storage� We also give
experimental results� showing the size of the seed sets and
supporting the claim that sublinear storage is used�

� Introduction

Scalar data de�ned over the plane or ��space is quite com�
mon in �elds like medical imaging� scienti�c visualization�
and geographic information systems� Such data can be visu�
alized after interpolation by showing one or more contours
or isosurfaces	 the sets of points having a speci�ed scalar
value� For example� scalar data over the plane are used to
model elevation in the landscape� and a contour is just an
isoline of elevation� In atmospheric pressure modelling� a
contour is a surface in the atmosphere where the air pres�
sure is constant� an isobar� In medical imaging� isosurfaces
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are used to show reconstructed scans of the brain or parts of
the body� The scalar data can be seen as a sample of some
real�valued function� which is called a terrain or elevation
model in GIS� and a scalar �eld in imaging�

A real�valued function over �D or �D can be represented
in a computer using a �D or �D mesh� which can be regular
�all cells have the same size and shape� or irregular� A ter�
rain �mountain landscape� in GIS is commonly represented
by regular square grid or an irregular triangulation� The
elements of the grid� or vertices of the triangulation� have
a scalar function value associated to them� The function
value of non�vertex points in the �D mesh can be obtained
by interpolation� An easy form of interpolation for irregu�
lar triangulations is linear interpolation over each triangle�
The resulting model is known as the TIN model for terrains
�Triangulated Irregular Network� in GIS� In computational
geometry� it is known as a polyhedral terrain� In this paper
we will consider the interpolation issues only as long as may
they a
ect the isocontour computation� In particular in Sec�
tion � we will state brie�y the properties we assume for the
interpolating function �satis�ed by the most commonly used
linear interpolation over simplicial complexes or multi�linear
interpolation over regular grids�� More on interpolation of
spatial data and references to the literature can be found in
the book by Watson ��
��

One can expect that the complexity of the contours with
a single function value in a mesh with n elements is roughly
proportional to

p
n in the �D case and to n��� in the �D case

����� Therefore� it is worthwhile to have a search structure
to �nd the mesh elements through which the contours pass�
This will be more e�cient than retrieving the contours of a
single function value by inspecting all mesh elements�

There are basically two approaches to �nd the contours
more e�ciently� Firstly� one could store the �D or �D do�
main of the mesh in a hierarchical structure and associate
the minimum and maximum occurring scalar values at the
subdomains to prune the search� For example� octrees have
been used this way for regular �D meshes �����

The second approach is to store the scalar range� also
called span� of all the mesh elements in a search structure�
Kd�trees ����� segment trees ���� and interval trees ��� ���
have been suggested as the search structure� leading to a
contour retrieval time of O�

p
n� k� or O�log n� k�� where

n is the number of mesh elements and k is the size of the
output� A problem with this approach is that the search
structure can be a serious storage overhead� even though
an interval tree needs only linear storage� Still� one doesn�t
want to store a tree with a few hundred million intervals



that would arise from regular �D meshes� It is possible to
reduce the storage requirements of the search structures by
observing that a whole contour can be traced directly in
the mesh if one mesh element through which the contour
passes is known� Such a starting element of the mesh is also
called a seed� Instead of storing the scalar range of all mesh
elements� we need only store the scalar range of the seeds
as intervals in the tree� and a pointer into the mesh� There
are a few papers that take this approach ��� ��� ���� The
tracing algorithms to extract a contour have been developed
before� and they require time linear in the size of the output
��� ��� ����

The objective of this paper is to present new methods
for seed set computation� Of a seed set� we require that any
possible connected component of any contour in the mesh
pass through at least one seed� Otherwise we could miss
a �portion of a� contour� To construct such a small size
seed set� we use a variation of the contour tree� a tree that
captures the contour topology of the function represented by
the mesh� It has been used before in image processing and
GIS research ��� ��� �
� ��� ���� Another name in use is the
topographic change tree� and it is related to the Reeb graph

used in Morse Theory ���� ��� ��� ���� It can be computed
in O�n log n� time for piecewise linear functions over �D ����

This paper includes the following results�

� We give a new� simple algorithm that constructs the
contour tree� For �D meshes with n elements� it runs
in O�n log n� time like a previous algorithm ���� but the
new method is much simpler and needs less additional
storage� For meshes with n faces in d�space� it runs in
O�n�� time� In typical cases� less than linear tempo�
rary storage is needed during the construction� which
is important in practice� Also� the higher�dimensional
algorithm requires subquadratic time in typical cases�

� We show that the contour tree is the appropriate struc�
ture to use when selecting seed sets� We give a poly�
nomial time and storage algorithm for minimum size
seed sets by using min�cost �ow in a DAG ����

� In practice one can use at most linear storage when
computing seed sets� We give a simple approxima�
tion algorithm that requires O�n log� n� time and lin�
ear storage� and gives at most twice as many seeds as
the minimum size seed set� In d�space� the algorithm
takes O�n�� time�

� The approximation algorithm has been implementated�
and we supply test results of various kind�

Previous methods to �nd small size seed sets didn�t give any
guarantee on their size ��� ��� ����

� Preliminaries on scalar functions and the contour tree

On a function F from d�space to the reals� the criticali�

ties can be identi�ed� These are the local maxima� the lo�
cal minima� and the saddles �or passes�� If we consider all
contours of a speci�c function value� we have a collection
of lower�dimensional regions in d�space �typically� �d � ���
dimensional surfaces of arbitrary topology�� If we let the
function value take on the values from �� to ��� a num�
ber of things may happen to the contours� Contour shapes
deform continuously� with changes in topology only when a
criticality is met �i�e�� its function value is passed�� A new
contour component starts to form whenever the function

value is equivalent to a locally maximal value of F � An ex�
isting contour component disappears whenever the function
value is equivalent to a locally minimal value�

At saddle points� various di
erent things can happen� It
may be that two �or more� contour components adjoin� or
one contour component splits into two �or more� compo�
nents� or that a contour component gets a di
erent topo�
logical structure �e�g�� from a sphere to a torus in �D�� The
changes that can occur have been documented well in texts
on Morse theory or di
erential topology ���� ���� They can
be described by a structure called the contour tree� which
we describe shortly�

For example� consider �D triangular meshes with linear
interpolation and note how the contour tree relates to such
meshes� For simplicity� we assume that all vertices have a
distinct function value� If we draw the contours of all critical
vertices of the mesh� then we get a subdivision of the �D
domain into regions �see Figure ��� Since all saddle points
must be vertices in our setting� one can show that every
region between contours is bounded by exactly two contours�
We let every contour in this subdivision correspond to a
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Figure �	 �D triangular mesh with the contours of the sad�
dles� and the contour tree�

node in a graph� and two nodes are connected �from max
to min� if there is a region bounded by their corresponding
contours� This graph is a tree� which is easy to show ���
���� and it is called the contour tree� All nodes in the tree
have degree � �corresponding to local extrema�� degree �
�normal vertices�� or at least � �saddles�� In other words�
every contour of a saddle vertex splits the domain into at
least three regions� For each vertex in the triangulation� one
can test locally whether it is a saddle� This is the case if
and only if it has neighboring vertices around it that are
higher� lower� higher� and lower� in cyclic order around it�
If one would take the approach outlined above to construct
the contour tree� ��n�� time may be necessary in the worst
case� because the total complexity of all contours through
saddles may be quadratic ���� An O�n log n� time divide�
and�conquer algorithm exists� however ����

In a general framework� we de�ne the contour tree with�
out assumptions on the type of mesh� interpolant� and di�
mension of the space over which function F is de�ned� The
input data is assumed to be	

� a mesh M of size n embedded in IRd�

� a continuous real�valued function F de�ned over all
cells of M �

We de�ne the contour tree T as follows�



� Take each maximal connected contour component which
contains a criticality�

� These components correspond to the supernodes of
T �the tree will be augmented later with additional
nodes� hence we use the term supernodes here�� Each
supernode is labeled with the function value of its con�
tour�

� For each region bounded by two contour components�
we add a superarc between the corresponding supern�
odes in T � oriented from the the higher to the lower
function value�

The contour tree is well de�ned� because each region is
bounded by two and only two contour components which
correspond to supernodes� In fact� it is easy to see that the
contour tree is a special case of the more general Reeb graph
in the �d� ���dimensional space obtained from the domain
�the mesh� extended with the function image space ���� ���
��� ���� Furthermore� one can show that the contour tree is
indeed a tree�

For �D meshes� all criticalities correspond to supernodes
of degree �� or degree � or higher� For higher�dimensional
meshes there are also criticalities that correspond to a super�
node of degree �� This occurs for instance in �D when the
genus of a surface changes� for instance when the surface of
a ball changes topologically to a torus �Figure ��b���

Superarcs are directed from higher scalar values to lower
scalar values� Thus� supernodes corresponding to the local
maxima are the sources and the supernodes corresponding
to the local minima are the sinks�

Since the type of the mesh and the function used to inter�
polate the associated discrete data may have some impact
on the the seed cells selection and contour tree computa�
tion we de�ne the weakest conditions required to apply the
present approach� Note that such conditions are satis�ed
by the most common simplicial decompositions with linear
interpolant and regular grids with multi�linear interpolant�

To be able to compute the contour tree� we make the
following assumptions	

� Inside any face of any dimension of M � all criticalities
and their function values can be determined�

� Inside any face of any dimension ofM � the range �min�max�
of the function values taken inside the face can be de�
termined�

We assume that in facets and edges of �D meshes� the items
above can be computed in O��� time� For vertices� we as�
sume that the �rst item takes time linear in its degree� Sim�
ilarly� in �D meshes we assume that both items take O��� to
compute in cells and on facets� and time linear in the degree
on edges and at vertices�

In �D� a saddle point p is a point such that for any suf�
�ciently small ��sphere around p� the contour of p�s value
intersects the ��sphere in at least two components� Possible
criticalities are shown in Figure �� When sweeping the func�
tion value from � to ��� they correspond to �a� two con�
tours merging or splitting� but not containing the other�
�b� an increment or decrement of the genus of one contour
surface� and �c� two contours merging or splitting� and one
containing the other� More cases can occur when a criti�
cality causes several of these changes at once� or when the
contour ends at the boundary of the mesh�

�a�

�b�
�c�

��sphere

Figure �	 Citicalities in �D�

� Contour tree algorithms

In this section we assume for simplicity that the mesh M is
a simplicial decomposition with n cells� and linear interpola�
tion is used� As a consequence� all critical points are vertices
of the mesh M � Instead of computing the contour tree as
de�ned in the previous section� we compute a variation that
includes nodes for all the vertices of M � also the non�critical
ones� So supernodes correspond to critical vertices and nor�
mal nodes correspond to other vertices� Superarcs are now
sequences of arcs� and connect two supernodes� It is easy to
determine the contour tree with only the supernodes using
the same technique� From now on� we call the contour tree
with nodes for all vertices the contour tree T � We�ll need
this augmented tree for seed selection in the next section�

The critical nodes of T that have in�degree � and out�
degree greater than � are called bifurcations� and the nodes
with in�degree greater than � and out�degree � are called
junctions� We�ll assume that all bifurcations and junctions
have degree exactly �� that is� out�degree � for bifurcations
and in�degree � for junctions� This assumption can be re�
moved� but it facilitates the following descriptions consider�
ably� Basically� other critical nodes can be seen as clusters
of critical nodes of degree �� For example� a node with in�
degree � and out�degree � can be treated as a junction and
a bifurcation� with a directed arc from the junction to the
bifurcation�

��� The general approach

To construct the contour tree T for a given mesh in d�space�
we let the function value take on the values from �� to
�� and we keep track of the contours for these values� In
other words� we sweep the scalar value� For �D meshes� one
can image sweeping a polyhedral terrain embedded in �D
and moving down a horizontal plane� The sweep stops at
certain event points	 the vertices of the mesh� During the
sweep� we keep track of the contour components in the mesh
at the value of the sweep function� and the set of cells of the
mesh that cross these components� The cells that contain
a point with value equivalent to the present function value
are called active� The tree T under construction during
the sweep will be growing at the bottom at several places
simultaneously� Each such part of T that is still growing
corresponds to a unique contour component at the current
sweep value� We group the cells into contour components
by storing a pointer at each active cell in the mesh to the
corresponding superarc in T � The contours can only change
structurally at the event points� and the possible changes
are the following	



� At a local maximum of the mesh �more correctly	 func�
tion�� a new contour appears� This is re�ected in T by
creating a new supernode and a new arc incident to it�
This arc is also the start of a new superarc� which will
be represented� Each cell incident to the maximum
becomes active� and we set their pointer to the new
superarc of T � At this stage of the algorithm� the new
superarc has no lower node attached to it yet�

� At a local minimum of the mesh� a contour disappears�
a new supernodenode of T is created� and the arc cor�
responding to the disappearing component at the cur�
rent value of the sweep is attached to the new supern�
ode� It is also the end of a superarc� The cells of
the mesh incident to the local minimum are no longer
active�

� At a non�critical vertex of the mesh� a new node of T
is created� the arc corresponding to the contour con�
taining the vertex is made incident to the node� and a
new arc incident to the node is created �there is no new
superarc�� Some cells stop being active� while others
incident to the vertex start being active� Their point�
ers are set to the current superarc of the contour� For
the cells that remain active� nothing changes	 their
pointer keeps pointing to the same superarc�

� At a saddle of the mesh� there is some change in topol�
ogy in the collection of contours� It may be that two
or more contours merge into one� one contour splits
into two or more� or one contour changes its topolog�
ical structure� A combination of these is also possible
in general� The �rst thing to do is to determine what
type of saddle we are dealing with� This can be de�
cided by traversing the whole contour on which the
saddle lies�

If two contours merge� a new supernode �junction� is
created in T for the saddle� and the superarcs corre�
sponding to the two merging contours are made inci�
dent to this supernode� Furthermore� a new arc and
superarc are created for the contour that results from
the merge� The new arc is attached to the new su�
pernode� All cells that are active in the contour after
the merge set their pointer to the new superarc in T �
If a contour splits� then similar actions are taken� If
the saddle is because of a change in topology of one
single contour� a new supernode is made for one exist�
ing superarc� and a new arc and superarc are created
in T � All active cells of the contour set their pointers
to the new superarc�

For the sweep algorithm� we need an event queue and a
status structure� The event queue can be implemented with
a standard heap structure� such that insertions and extrac�
tions take logarithmic time per operation� The status struc�
ture is implicitly present in the mesh with the additional
pointers from the cells to the superarcs in the contour tree�

Theorem � Let M be a mesh in d�space with n faces in

total� representing a continuous� piecewise linear function
over the mesh elements� The contour tree of M can be con�

structed in O�n�� time and O�n� storage�

Proof� The algorithm clearly takes time O�n log n� for all
heap operations� If the mesh is given in an adjacency struc�
ture� then the traversal of any contour takes time linear in
the combinatorial complexity of the contour� Any saddle of

the function is a vertex� and any contour can pass through
any mesh cell only once� Therefore� the total time for traver�
sal is O�n�� in the worst case� and the same amount of time
is needed for setting the pointers of the active cells� �

The quadratic running time shown above is somewhat
pessimistic� since it applies only when there are a linear
number of saddles for which the contour through them has
linear complexity� We can also state that the running time is
O�n log n�

Pm

i��
jCij�� where the m saddles lie on contours

C�� � � � � Cm with complexities jC�j� � � � � jCmj� Also� besides
the mesh �input� and the contour tree �output�� the addi�
tional storage required can be made linear in the maximum
number of active cells and the number of local maxima� So
this is O��no� maxima��max��i�m jCij� additional storage�
We can avoid the pointers from the mesh cells to the super�
arcs by copying the active part of the mesh into a separate�
temporary structure� Then these pointers don�t form a per�
manent storage overhead�

��� The two�dimensional case

In the �D case� the time bound can be improved to O�n log n�
time in the worst case by a few simple adaptations� First� a
crucial observation	 for �D meshes representing continuous
functions� all saddles correspond to nodes of degree at least �
in T � Hence� at any saddle two or more contours merge� or
one contour splits into at least two contours� or both� The
main idea is to implement a merge in time linear in the size
of the smaller of the two contours� and similarly� to imple�
ment a split in time linear in the size of the smaller resulting
contour� We also show how to maintain the pointers with
the active cells e�ciently�

In the structure� each active cell has a pointer to a name

of a contour� and the name has a pointer to the correspond�
ing superarc in T � Maintaining pointers now comes down
to changing names� We consider the active cells and names
as a union��nd like structure that allows the following oper�
ations	

� Merge	 given two contours about to merge� combine
them into a single one by renaming them to a single
name�

� Split	 given one contour about to split� split it into
two separate contours by renaming one subset of the
contour cells to a new name�

� Find	 given one active cell� report the name of the
contour it is in�

Like in the simplest union��nd structure� a Find takes
O��� time since we have a pointer to the name explicitly� A
Merge is best implemented by changing the name of the cells
in smaller contour to the name of the larger contour� Lets�
say that contour Ci and Cj are about to merge� Determin�
ing which of them is the smallest takes O�min�jCij� jCj j��
time if we traverse both contours simultaneously� We alter�
natingly take one �step� in Ci and one �step� in Cj � After
a number of steps twice the size of the smaller contour� we
have traversed the whole smaller contour� This technique is
sometimes called a tandem search� To rename for a Merge�
we traverse this smaller contour again and rename the cells
in it� again taking O�min�jCij� jCjj�� time�

The Split operation is analogous	 if a contour Ck splits
into Ci and Cj � the name of Ck is preserved for the largest
of Ci and Cj� and by tandem search starting at the saddle in



two opposite directions we �nd out which of Ci and Cj will
be the smaller one� This will take O�min�jCij� jCj j�� time�
Note that we cannot keep track of the size in an integer for
each contour instead of doing tandem search� because a Split
cannot be supported e�ciently�

Theorem � Let M be a mesh in �D with n faces in to�

tal� representing a continuous� piecewise linear scalar func�
tion� The contour tree of this function can be computed in

O�n log n� time and linear storage�

Sketch of the proof for the claimed time bound	

� Determining for each vertex of what type it is �min�
max� saddle� normal� takes O�n� in total�

� The operations on the event queue take O�n log n� in
total�

� Creating the nodes and arcs of T � and setting the in�
cidence relationships takes O�n� time in total�

� When a cell becomes active for the �rst time� the name
of the contour it belongs to is stored with it� this can
be done on O��� time� and since there are O�n� such
events� it takes O�n� time in total�

� At the saddles of the mesh� contours merge or split�
Updating the names of the contours stored with the
cells takes O�min�jCij� jCjj��� where Ci and Cj are the
contours merging into one� or resulting from a split�
respectively� It remains to show that summing these
costs over all saddles yields a total of O�n log n� time�

We prove the bound on the summed cost for renaming by
transforming T in two steps into another tree T � for which
the construction is at least as time�expensive as for T � and
showing that the cost at the saddles in T � are O�n log n� in
total�

Consider the cells to be additional segments in T as fol�
lows� Any cell becomes active at a vertex and stops being
active at another vertex� These vertices are nodes in T � and
the cell is represented by a segment connecting these nodes�
Note that any segment connects two nodes one of which is
ancestor of the other� A segment can be seen as a shortcut
of a directed path in T � where it may pass over several nodes
and supernodes�

The number of cells involved in a merge or split at a
saddle is equivalent to the number segments that pass over
the saddle node in T � the size of the smallest set at this node
determines the costs for processing the saddle �since we do
tandem search��

The �rst transformation step is to stretch all segments�
we simply assume that a segment starts at some source node
that is an ancestor of the original start node� and ends at
a sink that is a descendant of the original end node� It is
easy to see that the number passing segments at all saddles
cannot decrease by the stretch�

The second transformation step is to repeatedly swap
superarcs� until no supernode arising from a split �bifurca�
tion� is an ancestor of a supernode arising from a merge
�junction�� Swapping a superarc from a bifurcation to a
junction is illustrated in Figure 
� the integers a� b� c rep�
resent the number of segments passing over the superarcs
shown� Before the swap� the time spent in the merge at u
and the split at v� is O�min�a� b� � min�b� c�� where a� b� c
denote the number of segments passing these superarcs� Af�
ter the swap� this becomes O�min�a� b� c� �min�a� b� c���

Figure �	 Stretching two segments �dashed� in T �
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Figure 
	 Swapping a superarc�

which is at least as much� No segment ends� because all of
them were stretched�

It can easily be veri�ed that by repeatedly swapping su�
perarcs� T � can be derived such that no junction in T � has
a bifurcation as an ancestor�

Now� every segment can pass O�n� junctions and bifur�
cations� but no segment can be more than O�log n� times
in the smallest set� Summing this over the O�n� segments�
this results in a total of O�n log n� time for all renaming of
the cells�

� Seed set selection

A seed set is a subset of the cells �triangles or tetrahedra�
the mesh� A seed set is complete if every possible contour
passes through at least one seed� Since we assume linear
interpolation over the cells� the function values occurring in
one cell is exactly the range between the lowest and the high�
est valued vertices� This range is simply a one�dimensional
interval� and is also called the span� For each cell� its span
can be located in the contour tree� where it is represented
by two nodes� We add the span to the contour tree as a
directed arc� which we call a segment to distinguish it from
the arcs of the contour tree� Let T denote the contour tree�
and let G denote the DAG that is the contour tree extended
with the segments of all mesh elements� Observe that each
segment is a shortcut in T for one or more arcs on a directed



path� We say that the segment passes� or covers� these arcs
of T �see Figure 
���a��� The small seed set problem now
is the following graph problem	 �nd a small subset of the
segments such that each arc of T is passed by some segment
of the subset�

In this section we give two methods to obtain complete
seed sets� The �rst gives a seed set of minimum size� but it
requires polynomial time and storage� The second method
requires O�n log� n� time and linear storage in �D� and gives
a seed set at most twice the size of the minimum� In d�space�
this approximation algorithm takes O�n�� time and linear
storage�

��� Minimum seed sets in polynomial time and storage

We de�ne a bipartite graph B � �U � V� A� as follows� The
set U of nodes corresponds to the set of segments of the
mesh cells� and the set V corresponds to the set of arcs of
T � An arc �u� v� � A if the segment corresponding to u � U

passes the arc corresponding to v � V ��see Figure 
���b����
A complete seed set corresponds to a subset of U that dom�
inates all nodes in V � that is� each node in V should have
a neighbor in the chosen subset� The smallest cardinality
subset U � � U corresponds to a minimum seed set� The
graph B can have a number of arcs quadratic in the size of
G�

�a� �b�

u�

u� v�

v�

v�

u�

u�

B

v�

u�

v�

u�

G

u�

u�

v�

Figure �	 �a� A DAG G with the segments shown dashed�
�b� The bipartite graph B assiciated with G�

Observe that B is strongly chordal	 every cycle of even
length exceeding � has an odd chord� This is for the fol�
lowing reason� Since the nodes in U represent segments in
G� and three segments in G cannot have pairwise overlap of
an arc in T �or G� without having a triple overlap as well�
every cycle of even length exceeding � has a node in U and
in V that are connected but aren�t in the cycle �a chord��

We can augment B by turning U into a clique� B remains
strongly chordal� A minimum dominating clique on strongly
chordal graphs can be computed in linear time� because the
same result holds for the superclass of dually chordal graphs
�
� ��� This gives a minimum seed set�

Theorem � Given a contour tree T for a continuous func�

tion de�ned by a mesh with n cells� an optimum size seed
set can be computed in polynomial time and storage�

��� Approximation of small seed sets in linear storage

The excessive time and storage requirements for optimal
seed sets makes it nearly useless in practical applications�
We therefore developed an approximation algorithm to com�
pute a seed set using linear storage and O�n log� n� time in
the �D case� It yields a seed set of size no more than twice
the size of the smallest seed set� In higher dimensions� the
running time is O�n���

Our approximation algorithm is a simple greedy method
that operates quite similarly to the contour tree construc�
tion algorithm� We �rst construct the contour tree T as
shown before� We add the segments to form the graph G�
Then we sweep again� now in the mesh and in the graph G
simultaneously� During the sweep� greedy choices are made
in the set of segments in G� these segments correspond to
cells that will be seeds� The greedily chosen segments are
stored in a data structure D that allows for insertions of
newly chosen segments and for queries� A query speci�es a
node v of T � and asks whether some chosen segment in D
ends at v� and whether v is passed by some chosen segment
in D� The segments are grouped by superarc they pass as
usual� corresponding to cells intersected by the same con�
tour� To make the greedy choice at any superarc� we store
all active segments at a superarc sorted by function value of
the lower node of G in a binary search tree� The following
events can occur	

� Source	 Choose the segment leaving it with the lowest
value at the other end node� the greedy choice� Initial�
ize a set of active segments for this superarc of T �

� Normal node	 Update the currently active segments�

Query with the node in D to decide if any chosen seg�
ment passes it� If not� it must be the end node of a
chosen segment� Choose a new segment greedily and
add it to D�

� Sink	 Remove the group of active segments�

� Junction	 Update the active segments� merge the two
groups of active segments into one� and merge the cor�
responding two binary search trees�

Query with the node as for a normal node�

� Bifurcation	 Split the group of active segments into
two� and update them�

For each highest node v below the bifurcation� test
by querying in D if any chosen segment ends at it or
passes it� If neither is true� choose a segment active
at the bifurcation and into this superarc greedily� Add
the chosen segments �zero or more� to D�

Lemma � The greedy strategy has an approximation factor

of ��



We give a sketch of the proof� Note that if T only contains
junctions� then a greedy strategy is optimal� At a bifur�
cation� some segment leading into one superarc may be the
chosen one� whereas the greedy choice for the other superarc
would have been optimal� We can bound the number of seg�
ments chosen by the greedy strategy from above by assuming
that for both superarcs the greedy choice was taken� Then
we continue on both parts of the tree below these superarcs
in the same way� We can bound the minimum number from
below by assuming that only one segment was taken� and
we continue the argument on the same two subtrees as in
the greedy algorithm� So the subtrees are the same� and the
greedy method chooses at most twice minimum�

We treat junctions and bifurcations e�ciently as before�
by tandem search in the contours on the mesh� We can tra�
verse in time linear in the size of the smaller group to decide
how to merge or split the segments e�ciently� A merge or
split of components Ci and Cj takes O�min�jCij� jCjj� log n�
time� because it involves merging two binary search trees� or
splitting one� So we need O�n log� n� time for manipulating
the binary search trees�

To de�ne the data structure D� we �rst need a transfor�
mation of T and its segments� Give T some �xed� left�to�
right order of the children and parents of each supernode�
Then perform a left�to�right topological sort to number all
nodes� Then perform a right�to�left topological sort to give
each node a second number� The numbers are such that
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Figure �	 Left� the numbering of T � Right� the left envelope
of the rectangles intersecting a split line�

one node u is an ancestor of another node v if and only if
the �rst number and the second number of u is smaller than
the corresponding numbers of v �see Figure ��� These num�
bers can be seen as coordinates in the plane� Any segment
from a start node u to an end node v in T transforms to a
rectangle by using the numbers as coordinates� The lower
left corner of the rectangle has the coordinates of v� and the
upper right corner has the coordinates of u� The greedily
chosen segments are stored as such rectangles in the data
structure D� A query with a node of T asks if the point is
contained in some rectangle� this corresponds to some cho�
sen segment passing the node� D is an interval tree with
associated structures ����� The main tree is de�ned on the
intervals of the �rst coordinate� Each node stores a vertical
split line and two segment trees� one for query points to the
left of the split line and one for query points to the right� We
store the rectangles that intersect the vertical split line in
the left segment tree by storing the left envelope of the rect�
angles only �see Figure ��� This segment tree requires only
linear storage� and queries and insertions take logarithmic
time� For the whole interval tree with associated structures�
the storage is still linear� the query time is O�log� n� and

insertions take O�log n� time� The number of queries and
insertions is linear in the number of nodes in the contour
tree� Therefore� all operations on D also take O�n log� n�
time together� More details are in the full paper�

Theorem � LetM be a �D mesh with n cells representing a
real function� A seed set of size at most twice the optimum

can be determined in O�n log� n� time and linear storage�
For a mesh in d�space� the running time is O�n���

� Test results

In this section we present empirical results for generation
of seed sets within bounds of optimality� Given in Table �
are results collected from six datasets� both �d and �d� Pre�
sented are the total number of cells in the mesh� in addi�
tion to seed extraction statistics and comparisons to previ�
ously known e�cient approximation methods� The methods
presented here� shown to be within a factor of � of opti�
mal� represent an improvement of � to �� times over the
method of ���� which had no claim on the seed set size� The
presented storage statistics account only for the number of
stored items� and not the size of each storage item �a con�
stant�� Note that the bounded seed set method presented
here has� in general� greater storage demands� though stor�
age remains sublinear in practice� Such tradeo
s are consid�
ered acceptable for the bene�t of seed sets within guaranteed
bounds of optimality� Sample images from the test function
and LAMP datasets are given in the Appendix�

� Further research

This paper presented the �rst methods to obtain seed sets
for contour retrieval that are provably small in size� We gave
a polynomial time and storage algorithm to determine the
smallest seed set� and we also gave a factor two approxima�
tion algorithm that takes O�n log� n� time for functions over
�D and O�n�� time for functions over �D� In typical cases�
the worst case quadratic time bound seems too pessimistic�
The algorithms make use of new methods to compute the
so�called contour tree�

Test results indicate that seed sets resulting from the
methods described improve on previous methods by greater
than an order of magnitude in seed set size for some cases�
Storage requirements in the seed set computation remain
sublinear� as evidenced by the test results�

Our work can be extended in the following directions�
Firstly� it may be possible to give worst case subquadratic
time algorithms for higher�dimensional meshes� Secondly�
it is important to study what properties an interpolation
scheme on the mesh should have to allow for e�cient contour
tree construction and seed set selection� We are currently
studying these extensions�
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Table �	 Seed cell statistics for regular �top� and irregular �bottom� data
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Figure �	 Seed sets from �d scalar data
�a� seed set from a synthetic smooth function

�b� seed set for a slice of wind speed data �LAMP�


