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� Introduction

We consider NURBS based data structures for
molecules and their properties� to support synthetic
drug design and structural reasoning applications in
molecular chemistry� The di�culty of modeling and
visualization of large molecules derives from the high
combinatorial complexity of the typical molecule con�
sidered �e�g� proteins or nucleic acids ��� ��	
� There
are two main modeling approaches� The �rst describes
the molecule�s primary structure and the detailed 
D
position of each of its atoms� The second groups some
regions of the molecule into simpler shapes to describe
the folding of the molecule into its secondary� tertiary
and higher order structures�
In this paper we focus on the �rst case where it is

required to represent the primary structure of a macro�
molecule� One representation of the primary structure
is the space �lling model� where each atom is described
by a sphere with its van der Waals radius� The topo�
logical and combinatorial structure of this model has
recently been explored by Edelsbrunner ��� ��� ��	� In
particular from such formalization any information re�
garding the topological structure and the corresponding
geometry of the molecule can be easily extracted�
On the basis of such results we develop a B�rep data

structure that aims to be useful both for visualization
and modeling purposes� This requires the ability �a

to exactly represent the shape of the molecule� �b
 to
directly render such a representation� and �c
 to per�
form modeling operations that correspond to the addi�
tion�deletion of residues� The natural choice to achieve
both goals is to use trimmed NURBS �Non UniformRa�
tional tensor�product B�Spline with rational B�Spline
trimming curves
� They are an industry�wide stan�
dard as a modeling primitive and graphics libraries for

NURBS rendering are available �e�g� openGL� Open�
Inventor ���	
� Moreover� the rational parameterization
allows for an exact representation of a spherical surface�
This alone is not su�cient� In order to have an exact
representation of a macromolecular structure we also
need to represent for each atom� not its entire sphere�
only that portion of the sphere which belongs to the
external molecule surface� This means that from the
sphere which represents one atom we must cut away
the pieces contained in the neighboring atoms� We can
prove that adopting a certain parameterization each
trimming curve �a circle
 in the 
D space is mapped
back in the parameter domain to a curve that can be in
turn represented exactly as a NURBS curve� In this way
we can represent the contribution of each atom to the
molecule surface with a trimmedNURBS patch without
any approximation�

The method applies for example to the determination
of the solvent accessible surface �the o�set of a union of
balls is a union of balls
 and generalizes to achieve the
exact representation of the solvent contact surface �also
known as the Connolly surface of the molecule ��� �	
�

The main contributions of the paper are� �a
 the de��
nition of a �minimal size
 B�rep with standard trimmed
NURBS representation �section 

� �b
 parametric B�
rep model of the solvent accessible surface useful for an�
imation �section �
� �c
 the classi�cation of the solvent
contact surface and computation of its representation
as a trimmed NURBS�

� Boundary Representation of
Molecule �Property� Surfaces

The representation we use for molecule �property
 sur�
faces is a boundary representation� Two classes of in�
formation are used� �a
 geometric description of each
patch� �b
 topological relations amongst the patches�
We maintain the following data structures related to
the molecule�

�



�� The weighted Voronoi diagram ��� ��	 �power dia�
gram
 D of the molecule atom centers �the weights
are the squares of the atoms radii
�

�� A regular triangulation T �dual of the power dia�
gram
 of the same set of weighted points as in ���	�


� A NURBS patch per molecule atom�

As it will be shown in the following sections these
data structures contain all the relevant information for
the molecule surface� Edelsbrunner ��� ��� ��	 has shown
that the intersections among atoms in a molecule cor�
respond to some edges of the regular triangulationT
�those in the � � � shape
� This implies that the
edges of a speci�c subgraph of the regular triangulation
correspond also to adjacency relations between bound�
ary patches of the solvent accessible surface� Similarly�
we have that the adjacency relations between pairs of
spherical or toroidal patches in the solvent contact sur�
face correspond to incidence relations �vertex�edge or
edge�facet
 of the boundary of the corresponding reg�
ular triangulation� Hence the � � � shape provide us
with topological relations between the patches that form
the molecular surface�
The power diagram provides us with the cutting

planes that generate each spherical patch� This enables
us to determine the exact representation of the molecule
surface� By translating the same planes we get the cut�
ting planes necessary to determine the exact description
of the solvent contact surface�
The NURBS patches are thus de�ned in term of these

two data structures� We are able to update them dy�
namically as we change a parameter �e�g� the radius
of the solvent atom or the number of atoms in the
molecule
 of the representation to have an e�cient rep�
resentation� This yields a parametric B�rep of the sol�
vent accessible�contact surface for animation�

� Atom Boundary Patch as a
Trimmed NURBS

As we have outlined in the introduction we have selected
NURBS as basic modeling primitive ���	� In this section
we present the method for computing an exact NURBS
representation for the spherical patches that compose
the external surface of a molecule� This di�ers from
the work of Piegl ���	� where the goal was to represent
an entire sphere as piecewise rational Bezier or NURBS
patch� In particular� for an appropriate choice of pa�
rameterization we obtain a single trimmed NURBS for
each atom�s external surface contribution� Each such
patch is the intersection of one sphere �representing one
atom
 with the exterior of all its neighboring spheres�
Consider the intersection S � R of a spherical surface
S � fx � kx � x�k � r�g with the external of sphere

R � fx � kx� x�k � r�g� There always exists an halfs�
pace � � fx � �x � l
 � dg such that�

S �R � S � ��

For each atomwe can reduce our patch representation
problem to the intersection of a sphere with a set of half�
spaces� The union of balls model ��	 provides the equa�
tion of each halfspace intersecting one atom�� Note that�
since we use a parametric representation S � f�u� v
� we
need to compute the domainD in �u� v
 space such that
f�D
 � S � ��
To have an e�cient representation we want to obtain

only one NURBS patch per atom� Moreover� since we
will use this formulation to achieve a representation of
the surface parametric in the radii of the atoms we need
a formulation that maps continuous modi�cations of the
radii into continuous modi�cations of the domain D�
This is not achieved with the classical NURBS sphere
representation as a rotational surface of a half circle ���	
since there are two points �north and south pole
 of the
sphere that are the image of two lines in the parameter
domain �say u � �� u � � if the interval of the u domain
is ��� �	
� This implies that when the boundary plane of
� crosses one of the poles the corresponding trimming
curve in the �u� v
 domain would have a discontinuous
change in shape�
Without loss of generality we assume that S is the

unitary sphere� The parameterization we adopt is the
following �see ��	
�

x �
�u

u� � v� � �

y �
�v

u� � v� � �
��


z �
u� � v� � �

u� � v� � �

This parameterization maps the �in�nite
 rectangular
domain

������	� ������	

to the unitary sphere� Note that in practice we do not
deal with an in�nite domain since we do not represent
an entire sphere but only one spherical patch� In par�
ticular assume that we are considering the intersection
S� of the unit sphere S with the halfspace z � d �with a
rigid body transformation and a scaling we can always
reduce the �rst intersection to this case
� We determine
a positive constant l such that S� � f�I
� where I is
the square domain ��l��l	 � ��l��l	� In the parame�
ter domain this corresponds to the condition D � I�
The minimum value of l that satis�es such condition

�Given the Voronoi complex of the weighted centers of the

molecule atoms� the halfspaces whose common intersection gen�

erates the Voronoi cell of the atomB are those with which S � �B

must be intersected�

�



is l �
q

��d
��d

� Regarding the numerical stability of the

method it is important to note that for d � ����� we
get l � ������ � � �� Even when d is much larger than a
realistic value� we still deal with a small domain region�

The next step is to determine the domain D� At this
end we simply replace the parametric equations ��
 of
the of the sphere to the variables in the Cartesian in�
equality of � obtaining the Cartesian inequality de�ning
D�

u� � v� � �

u� � v� � �
� d � u� � v� � l� ��


Thus the domain D is a disc with center in the origin
and radius l� Note that a variation of d corresponds to
a scaling of D� that can be performed by simply scaling
its control polygon �once a NURBS representation is
de�ned for the trimming curve ofD
� For any additional
cutting halfspace �� � ax� by � cz � d we have�

�c� d
u� � �c � d
v� � �au� �bv � �c� d
 � � �



If the plane ax � by � cz � d contains the singular
point of the parameterization P � ��� �� �
 then c � d�
In this case the trimming curve is the straight line�

�au� �bv � �c � d
 � �� ��


The domain D must be intersected with the half�plane
�au� �bv � �c� d
 � ��

If c� d 	� � the trimming curve derived from �

 has
Cartesian equation�

�u�
a

c� d

� � �v �

b

c� d

� �

a� � b� � c� � d�

�c� d
�
��


In general we note that all the trimming curves are cir�
cles �possibly with in�nite radius
 so that the region
D can be modeled as progressive intersection�di�erence
of a sequence of circles� Corresponding to the cutting
halfspace �� of normalized equation ax � by � cz � d�
with a��b��c���� we have in parameter space a circle

C of center � a
c�d

� b
c�d


 and radius
p
��d�

c�d
� The region

de�ned by such circle �inside�outside
 depends on the
sign of the term c � d� For c � d � � P � ��� �� �
 is
inside �� and hence the points of the plane at in�nity are
included in the region corresponding to ��� That is �� is
mapped onto the outside of C� This requires C to be
parameterized with a clockwise orientation� Symmetri�
cally c� d � � implies that �� corresponds to the region
inside C and hence C must be parameterized with a
counterclockwise orientation�

In appendix A we detail the control points computa�
tion used for the de�nition of the spherical patch�

�a


�b


Figure �� The HIV�� PROTEASE �a
 and one solvent
accessible surface �b
 for the same molecule�

� Solvent Accessible Surface

In this section we discuss the representation of the sol�
vent accessible surface of a molecule� Since we are rep�
resenting the molecule with a union of balls B� in the
following� with some abuse of terminology� we will call B
both the molecule or the union of balls� Similarly each
single ball B will be called either a ball or an atom�
Assume we have a ball B of radius r �a solvent atom


free to move in space without intersecting the union of
balls B �a molecule
� We say that B is in a legal position

if its interior
�
B does not intersect B�

De�nition � The solvent accessible surface Sa of the
union of balls B relative to a solvent atom B of radius
r� is the locus �envelope� of the centers of the spheres
with radius r tangent to B�
From ��� ��	 we know that Sa is the boundary surface

of the union of balls B� that has the same set of atoms
as B but with all the radii increased by r �see �gure �
�
On the basis of this property we can achieve a repre�






sentation of Sa parametric in r� For r � � we obtain
the van der Waals surface of the molecule �B� Varying
the value of r we get the accessible surfaces of di�erent
solvents�
Let V � 
 V� be the convex cell corresponding to the

ballB� 
 B�� V � is the intersection of a set of k halfspace
��� � � ���k� The the contribution of B to the boundary
of B �the surface Sa for r � �
 is given by �B � �� �
� � �� �k�
Now assume r � � and consider the sphere B� in B�

corresponding to B in B� The contribution of B� to Sa
is computed by intersecting �B� with the same set of
halfspaces ���� � � � � ��k��
To compute the trimming curves in the parameter

space �u� v
 of the NURBS patch representing �B������
� � � � ��k� we apply a mapping that transforms B� into
the unitary ball Bu� Under this mapping the variation
of r corresponds to have a �xed �unitary
 radius ball Bu

intersected with a set of varying halfspaces� Formally�
if the ball B� and one halfspace �� have equations�

B� � x� � y� � z� � R�

�� � ax� by � cz � d � �

we apply the coordinate transformation x � Rx�� y �
Ry�� z � Rz� to map B� to Bu�

Bu � x�� � y�� � z�� � �

�� � ax� � by� � cz� �
d

R
� �

The change of the radius R of B� to R � r is hence
mapped in normalized coordinates �x�� y�� z�
 to the
change of the parameter d

R
of the halfspace �� to d

R�r �
This means that the equation of the trimming circles
can be rewritten� including the parameter r� as�

�u�
a

c� d
R�r


���v�
b

c � d
R�r


� �
a� � b� � c� � � d

R�r 

�

�c� d
R�r 


�

��

that is a circle of center � a

d

R�r
�c

� b
d

R�r
�c

 and radius r �

p
�R�r���d�

j�R�r�c�dj � To maintain the description of the domain

D we have to maintain a �D dynamic union of balls that
is equivalent to maintain a weighted Voronoi diagram of
moving points in the plane ��
� �	�
Note also that the coe�cient d of the plane equation

is also function of r� In fact as the radius of each ball is
increased by r the Voronoi plane that separates two balls
moves toward the smaller one� An example is shown in
�gure �� The distances l�� l� of the Voronoi plane � from
the centers of the two balls must be such that the power
distances of � are equal� that is�

l�� � r�� � l�� � r��

l

l� l�

l�� l��

r�

r� � r

r�

r� � r

Figure �� As the radius of the two balls is increased by
� the Voronoi plane that separate them moves towards
the smaller ball�

Moreover the sum of two distances is constant �the two
balls grow but do not move
�

l� � l� � l

From these two equations we get for l� so�

l�� � r�� � �l � l�

� � r�� � l� �

l� � r�� � r��
�l

When r� changes to r� � r and r� changes to r� � r

we have�

l�� � l� �
r� � r�

�l
r

l�� � l� �
r� � r�

�l
r

� Rolling Ball Surface

In this section we extend the method to achieve an exact
NURBS representation of the rolling ball surface Sr of
a molecule B� The goal is to achieve an intermediate
stage toward to construction the solvent contact surface
Sc de�ned in the next section� In Figure 
 is shown
the Fullerene molecule along with two solvent contact
surfaces corresponding to two di�erent solvent radii�
We assume to have a ball B of radius r �the solvent

molecule
 which is free to roll along the union of balls
B �the molecule
� The union of all the balls B �moving
tangentially to B in all the possible directions
 is a re�
gion whose outer envelope strictly contains �if r � �
 B
and whose inner envelope is tangent to B �see �
	
�

De�nition � The rolling ball surface Sr of the
molecule B with respect to a ball B of radius r is the
inner envelope of the region described by B rolling on B
in all possible directions�

The close relationship between the solvent accessible
surface and the rolling ball surface is evident from this
de�nition�

�



�a


�b


�c


Figure 
� The Fullerene molecule �a
 and two solvent
contact surfaces �b
��c
 corresponding to two di�erent
solvent radii�

Lemma � �Necessary Condition� If a point p lies on
the rolling ball surface Sr then it lies also on the bound�
ary of a ball B with center on the solvent accessible sur�
face Sa�

Proof� By De�nition � when p 
 Sr there exists a
ball B of radius r such that p 
 �B� B � B 	� � and
�
B �B � �� But if the center q of B does not belong to
Sa either

B � B � �
or �

B �B 	� �
�

Using the regular triangulation T � associated with B�
we can de�ne the set of patches composing Sr � First�
recall the relationship between �T � and �B��

 each vertex v of �T � corresponds to a spherical
patch of �B��


 each edge e of �T � corresponds to the intersection
line between two adjacent spherical patches of �B��


 each triangle t of �T � corresponds to the intersec�
tion point between three adjacent spherical patches
of �B��

We base the construction of the rolling ball surface
on these properties� Using Connolly�s terminology ��	
�as we will later see that the solvent contact surface is
a subset of the rolling ball surface
 we have �a
 each
vertex v of �T � corresponding to a �convex� spherical
patch in Sr � �b
 each edge e of �T � corresponding to a
�saddle� toroidal patch in Sr � and �c
 each triangle t

of �T � corresponding to a �concave� spherical patch in
Sr � The de�nitions of these three kinds of patches are
reported in the following three subsections�

��� �Convex� Spherical Patches

Consider the spherical patch �v with radius r� r� of �B�
associated with the vertex v �see �gure �
� It represents
a moving solvent ball that maintains contact with �B
at a point p� The surface described by the point p is in
turn a spherical patch of radius r �part of �B
� It can
be computed from the power diagram of �B� Call B the
ball �of radius r�
 of B with center v� It contributes the
patch �B � �� � � � ���k �that is the Voronoi cell of v is
�� � � � �� �k
 to �B � The ball B contributes the patch
�B � ��� � � � � � ��k to Sc� where ��i is parallel to �i but
nearer to v� Without loss of generality we assume v to
be the origin ��� �� �
 and �� to be orthogonal to the x
axis �with a rigid body transformation we can always
achieve this situation
� The halfspace �� is x � d and
the halfspace ��� is x � �d where�

�



Figure �� A solvent atom of radius r that rolls on the
molecule surface B maintaining its center on the solvent
accessible surface B�� Its point of contact with B belongs
to the solvent contact surface Sc�

�d �
dr�

�r � r�


�
We can so determine any halfspace ��i corresponding

to �i and hence �B � ��� � � � �� ��k�

��� �Saddle� toroidal patches

A similar argument holds for saddle toroidal patches�
With reference to �gure � we consider the edge e of �T �

with extreme vertices v� and v�� The edge e corresponds
on �B� to a �portion of
 circle �e of intersection between
two adjacent balls �B� � �B�� Thus� it is possible to
roll a solvent ball� moving its center along the arc �e�
If the edge e is not a facet of any triangle of �T � then

�e is an entire circle� The ball that rolls maintaining
its center on �e describes a torus E� We are interested
in just a portion of �E� Consider the plane � of the
Voronoi diagram on which e lies� Applying the proce�
dure speci�ed in the previous subsection we compute
two planes �� and �� by translating � towards v� and
v�� respectively� The intersection of �E with the region
within �� and �� generates two toroidal patches� The
one nearest to the torus axis v�v� is the toroidal patch
E� that belongs to Sr�
If the edge e is the arc from point �t� to point �t� then

the toroidal patch associated with e is the portion of
the patch E� intersected with two more halfspaces� Call
��v�� v�� v�� v�
 the halfspace that contains v�� v�� v� in
its boundary and v� in its interior �with v�� v�� v�� v�
a�nely independent
� The toroidal patch corresponding
to e is �see �gure �
�

E� � ��v�� v�� �t�� �t�
 � ��v�� v�� �t�� �t�
�

��� �concave� spherical patches

Finally� consider the triangle t of �T � with vertices v��
v�� and v�� It corresponds to the point �t in �B�� In

v�

e
t�

t�

�e

v�

�a

�

�b

�t�

�t�

Figure �� �Top
 A solvent atom B of radius r that rolls
on the molecule surface B maintaining its center on the
solvent accessible surface B� and two points of contact
with two molecule atoms� The portion of circle of �B
that belongs to the triangle with the three vertices v��v�
center of B� belongs to the rolling ball surface Sr� �Mid�
dle
 The toroidal NURBS patches of the rolling ball sur�
face Sr of the ca�eine molecule� �Bottom
 The toroidal
NURBS patches of Sr shown together with the union of
balls�

�



v�

v�

v�

t

�t

Figure �� A solvent atom of radius r tangent to the
molecule surface B maintaining its center on the solvent
accessible surface B� and three points of contact with
three molecule atoms� The portion of �B inside the
tetrahedron with vertices v��v��v�� center of B� belongs
to the rolling ball surface Sc�

this case we have a solvent atom B with no degrees of
freedom �it cannot roll since its center is �xed in �t
� The
contribution of B to Sc is thus given by�

�B � ��v�� v�� t� v�
 � ��v�� v�� t� v�
 � ��v�� v�� t� v�
�

Figure � depicts a complete solvent contact surface
�a superset of the rolling ball surface
 of the ca�eine
molecule with the concave patches highlighted in purple�

��� Correctness of the Result

In this subsection we show that the set of patches we
have computed form the required rolling ball surface Sr �
We have already shown in Lemma � that any point

p of Sr must belong to the boundary of a ball B whose
center belongs to �B��
Take the point p in �B and the direction �d � �op where

o is the center of B �with o 
 �B�
� It easy to verify
that p 
 Sr i� the following property holds�

Property � Given a direction of translation �d� i�
�d � �d� � � there is always a small 	 � � such that any
translation of B of an 
 � � with 
 � 	 along the direc�
tion �d� will intersect B�

Theorem � Any point in the rolling ball surface of the
molecule B belongs to one of the patches of Sr computed
in the section above�

Proof� From Lemma � we have that all the points p of
Sr belong to the boundary of some tangent solvent ball
B� Also for each solvent ball B of radius r its intersec�
tion points p with Sr are �all
 its boundary points for

Figure �� Complete Connolly surface of a ca�eine
molecule�

�



which property � holds� Thus� the fact that there is a
small neighborhood of B where no legal ballB� contains
in its interior any point p 
 Sr � proves the theorem� �

� Solvent contact surface

In this section we extend the method to achieve an exact
NURBS representation of the solvent contact surface Sc
�also known as the Connolly surface
 of a molecule B�
The surface is de�ned as follows�

De�nition � A point p belongs to the solvent contact
surface Sc of the molecule B with respect to a solvent
with atoms of radius r i��


 there exists a legal ball B� of radius r that contains
p in its boundary�

�B� j p 
 �B� and
�
B� �B � � ��



 there is no legal ball B� of radius r that contains p

in its interior�

�
B� �B � � � p 	
 �

B� ��


The close relationship between the solvent contact sur�
face and the rolling ball surface becomes clear from this
de�nition�

Lemma � If a point p lies on the solvent accessible sur�
face Sc then it lies also on the rolling ball surface Sr �

Proof� The proof can immediately be derived from the
comparison of de�nition � with de�nition 
� Further�
from this follows that lemma � holds not only for Sr �
but also for Sc� �
The problem that remains to be solved is the removal

of �possible
 self intersections that the rolling ball sur�
face might have� and that make it di�er from the solvent
contact surface �for a classi�cation of the classes of self�
intersection that may occur see �
	� �g�
� This problem
can be geometrically highlighted even with a set of two
small balls along which a large radius probe is rolled �see
�gure �
� In this case the blending surface is formed by
a toroidal patch that is self�intersecting�
To show the same problem for the concave patches

at least three spheres are needed� Figure � shows three
possible con�gurations of the solvent contact surface for
a set of three balls� From the picture it is clear how
complex the shape can get �with sharp features� varying
in genus and possibly disconnected
 even for a simple
con�guration of three balls�
In the following subsections we will show how the

patches of the rolling ball surface can be trimmed to
get the exact representation of the solvent contact sur�
face� As for the previous case we will report a brief
sketch of the proof of correctness�

�a
 �b


Figure �� �a
 The rolling ball surface �in green
 with
a probe of radius �� on two spheres �in red
 of radius
� is a self intersecting surface� �b
 The corresponding
solvent contact surface has no self intersection�

��� Convex Patches

The convex patches of the solvent contact surface are
exactly the same of the rolling ball surface� This derives
immediately from the following�

Lemma � The solvent contact surface Sc of the
molecule B is completely included within the region be�
tween �B and �B�� where �B� is the corresponding sol�
vent accessible surface�

Since Sc does not intersect the interior of B there is
no nee to further trim the convex patches since they
belong to �B�

��� Toroidal Patches

First of all� we exclude the possibilities of two toroidal
patches intersecting each other and of a toroidal patch
intersecting with a concave�convex patch�

Lemma � Given two toroidal patches Ti�Tj �with
i 	� j� their relative interiors are disjoint�

�
T i �

�
T j� �

Lemma � Given a toroidal patch Ti and a concave
�convex� patch Cj� their relative interiors are disjoint�

�
T i �

�
Cj� �

�



�a�

�b�

�c�

Figure �� Three possible con�gurations of the solvent contact surfaces and rolling ball surfaces for di�erent radii of
the solvent and molecule atoms� On the left the self�intersecting rolling ball surfaces are shown� On the right the
corresponding solvent contact surfaces are shown �without self�intersections��

�



From the two previous lemmas we derive that one
toroidal patch can intersect only itself� This happens
when it can be constructed as rotational surface of an
arc of circle around an axes that intersect the arc �see
�gure �	�� For each arc a rotating around an axis l

intersecting a we must remove that portion of a lying
on the 
wrong� side of l� In this way we compute the arc
a� �a disconnected subset of a� whose rotational surface
around l has no self intersection as in �gure ��

a

l

a�

l

�a�

�b�

a�

Figure �	� �a� The arc a rotating around the axes l

describes a self intersection portion of torus� �b� The
arc a� rotating around the axes l describes portion of
torus with no self intersection�

��� Trimming the Concave Patches

First of all
 we exclude the possibility of a concave patch
intersecting either itself or a convex patch �we already
know that it cannot intersect a toroidal patch��

Lemma � Given a concave patch Ci and a convex

patch Cj� their relative interiors are disjoint�

�

Ci �
�

Cj� �

Lemma � One concave patch cannot intersect itself�

As show in Figure � two distinct concave patches can
intersect each other� Since each concave patch is a por�
tion of sphere we have to deal again with a sphere�sphere
intersection problem� Hence we can simply maintain

the regular triangulation of the centers of the concave
patches �in this case all the weights are equal� so that we
have all the relation of reciprocal intersection between
concave patches� It has been shown in section � that
the intersection between each pair of spheres is mapped
to the insertion of an additional trimming circle in the
domain space� Taking into account the intersections
between pairs of concave patches
 we must add some
trimming circles to the domains of each concave patch
to obtain the result of Figure ��

��� Correctness of the Result

After the additional trimming curves are added to each
toroidal�concave patch we get an exact representation
of the solvent contact surface Sc �see Figure ����

Theorem � Any point in the solvent contact surface

of the molecule B belongs to one of the patches of Sc

computed in the section above�

Proof� From Theorem � we are 
locally� guaranteed
that Sc is the solvent contact surface of B� Moreover
the additional trimming curves guarantee that there is
no legal ball B� �not only in the neighborhood of B�
that contains in its interior any point p � capSr � Hence
the theorem� �
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APPENDIX A � control points

computation �

In this appendix we explain the computation of the
NURBS control points� The approach we take is to
compute the control points once for all molecule atoms�
That is each atom will be represented by its speci�c do�
main D in �u� v� space and the same set of normalized
control points that represent the unitary sphere with
center in the origin� Then we apply an a�ne transfor�
mation to map the unitary sphere to the position taken
by the atom� To have a unique base set of control points
�de�ning a portion of the normalized sphere� that can
represent any atom we need to be sure that for each
ball B in B there is at least a neighbor ball �B
 that
intersects B for the smallest portion� This is because
we wish to compute the control points of a portion of

�	



Figure ��� Complete Connolly surface of a Nutrasweet
molecule�

sphere which is a �bounded� rectangular domain and a
minimum superset of any domain D of any atom�
Fortunately this condition is satis�ed for all

molecules� For example in the ball and stick represen�
tation used in Raster�D ��
 ��� a bond �stick� is drawn
between to atoms of radii r�� r� if the distance r between
the centers of the two atoms is less than 	���r� � r���
Since in a molecule there is at least one bond per atom
we have that for each atom there is at least a neighbor
atom for which r � 	���r� � r��� If we also consider

that minimum atom size in a molecule is ���
�

A and

the maximum is ����
�

A we have that each atom is in�
tersected by a neighbor atom for at least 	������� of
its radius� This means that
 with reference to equa�
tion ��� we can always assume to have d � 	������ that
is l � ����������������� For this �xed value of l we
apply a change of polynomial basis to get the coordi�
nates �x� y� z� of one quarter of the control points �and
relative weight w� as in the table below�

P� P� P�

P�

P� P�

P� P�

P�

x y z w

P� 	 	 �� �
P� 	 � �� �
P� 	 � 	 �
P� � 	 �� �
P� � � �� �
P� � � 	 �
P� � 	 	 �
P� � � 	 �
P� � � � �

The other control points are just computed mirroring
these twice with respect to the x and y axis� The knots
vectors are u � ���� �� �		���� v � ���� �� �		�����
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