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Spectral Surface Quadrangulation
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(a) Laplacian eigenfunction (b) Morse-Smale complex (c) Optimized complex (d) Semi-regular remeshing

Figure 1: We quadrangulate a given triangle mesh by extracting the Morse-Smale complex of a selected eigenvector of the mesh Laplacian
matrix. After optimizing the geometry of the base complex, we remesh the surface with a semi-regular grid of quadrilaterals.

Abstract tifact of the process Becausg thes problens arise so easiy and
can hinde theaccuray ard efficiency of subsequetroperationsthe

. . ability to reme$ sufaceswith well-shape well-space elemensis
Resampling raw surface meshes is one of the most fundamental,, importart tod for mesh processing.

operations used by nearly all digital geometry processing systems.
The vast majority of this work has focused on triangular remeshing, Much of the remeshig work in the graphic literature focuses on

yet quadrilateral meshes are preferred for many surface PDE prob-triangle meshesthoudh many graphis ard scientifc applications
lems, especially fluid dynamics, and are best suited for defining beneft from goad quadrilaterd meshes Suc meshe shoutl have

Catmull-Clark subdivision surfaces. We describe a fundamentally asfew extraordinay vertices as possibe ard their elemens should
new approach to the quadrangulation of manifold polygon meshes haveinternd anglesnear 90°. Quadrilateras are the preferral prim-

using Laplacian eigenfunctions, the natural harmonics of the sur- itive in severd simulation domains including computationkfluid

face. These surface functions distribute their extrema evenly acrossdynamics where extraordinay points can lead to numericé in-

a mesh, which connect via gradient flow into a quadrangular base stability [Stam 2003] Catmull-Clak subdvision of a poor mesh
mesh. An iterative relaxation algorithm simultaneously refines this can yield wrinkles [Halstea et al. 1993} ard the tensa-product
initial complex to produce a globally smooth parameterization of NURBS patcha still usel in CAD/CAM productio software work

the surface. From this, we can construct a well-shaped quadrilat- beg on a mes compogd exclusvely of quadrilaterals Furthe-

eral mesh with very few extraordinary vertices. The quality of this more decomposig a suiface into well-shapé quadrangle simpli-

mesh relies on the initial choice of eigenfunction, for which we de- fiesthe constructio of atexture atlas.

scribe algorithms and hueristics to efficiently and effectively select

the harmonic most appropriate for the intended application. We have developed a new approab for huilding a quadrangular

bas compkx over atriangulatel manifold of arbitrary genus This
approab is bas& on the Morse theoren that for almog all real
functions the Morse-Smat compkx (reviewed in §4), consisting
of the ridge lines tha extend from its saddle to its extrema forms
guadrangularegions. To spae the® regions evenly over the su-
face we choo® asour red function asha harmonc of the appro-
1 Introduction priate frequercy, computel in §3 as an eigawvecta of the Laplacian

matrix of the input mesh A new iteraive relaxatian algorithm de-

scribal in §5 simultaneousl improves this bae med layou while
Meshes generated from laser scanning, isosurface extraction anccomputirg aglobally smooh parameterizatioused to generag the
other methods often suffer from irregular element and sampling ar- final semi-regyulargrid of well-shapedjuadilaterals.

Keywords: quadrangular remeshing, spectral mesh decomposi-
tion, Laplacian eigenvectors, Morse theory, Morse-Smale complex

The completespectrumof the meshdefinestwo families of com-
plexes: the primal Morse-Smaleandtheir quasi-duaktomplexes,a
constructiorwe proposén §4.3. Thequality of thefinal meshis in-
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putationonly to the eigervectorsarounda desiredfrequeng.

The resulting method producesfully conforming semi-rgular
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quad-only meshes thgb shows contain fewer extraordinary points, and mesh signal processing [Taubin 2000]. Retaining and quan-
have better element quality and competitive geometric fidelity when tizing only the most important frequency bands provides a very
compared to meshes produced by existing quadrangulation meth-effective means for compressing the surface geometry [Karni and
ods. Though this method is designed for uniform surface sampling, Gotsman 2000]. Eigenvectors corresponding to thedirgin-zero

§3.2 explores its adaptation to follow large-scale sharp features us-eigenvalues can also automatically and aesthetically embed graphs
ing a selective feature-based shifting of the Laplacian matrix. in R4 [Koren et al. 2002].

Morse Theory. Discrete Morse theory [Banchoff 1967; Edels-

brunner et al. 2003] and its related data structures provide the under-
2 Related Work pinnings for a variety of topological graphics applications for im-

plicit surfaces [Stander and Hart 1997], volumetric isosurfaces [van
Meshed surface patching and retessellation touch on a number ofKreveld et al. 1997; Pascucci and Cole-McLaughlin 2002; We-
closely interrelated and extensively studied areas. We review only ber et al. 2002] and shape database searches [Hilaga et al. 2001].
the most relevant results here, leaving the details to survey articlesOur approach builds on the Morse-Smale complex used for surface
on parameterization [Floater and Hormann 2004], remeshing [Al- function simplification [Bremer et al. 2004] and the minimal Morse
liez et al. 2005], surface simplification [Garland 1999], and mesh base domain described by Blial.[2004].
generation [Bern and Eppstein 1995].

Semi-Regular Triangle Remeshing. Semi-regular schemesmap 3 Laplacian Eigenfunctions

the input surface onto a triangulated base domain and then regu-

larly sample each triangular patch by recursive subdivision. eEck . i .

al. [1995] formed a triangular base mesh from the dual of a quasi- Ve seek, for an input oriented manifold meghof any genus, a
Voronoi surface decomposition whereas the MAPS system [Lee well-defined quad.rangulatlon ofwgll-shapeq evenly distributed aII.-
et al. 1998] used simplification. Normal meshes [Guskov et al. guad elements with few extraordinary vertices. Our approach is
2000; Friedel et al. 2004] improve the encoding efficiency using a Puilt upon the property that the Morse-Smale complex (described
multiresolution hierarchy, globally smooth parameterization [Kho- 1ater in§4) connecting the saddles and extrema of almost any real
dakovsky et al. 2003] increases parametric smoothness across triSurface functiorf : M — R quadrangulates the surface. Though this
angular base-domain boundaries, and non-linear parameterizatiorfomplex s well-defined for any non-degeneratéhequality of the

methods [Schreiner et al. 2004] can further reduce distortion. qua;:lrangulation is intilmately tied to the choicefofFor arbitrary
choices off, the resulting complex can very poorly quadrangulate

the surface. This paper explores the key insight that shape harmon-
ics evenly distribute their extrema and so serve as ideal functions
from which to generate a quadrangulated base domain. This sec-
_tion shows how to efficiently compute these harmonics of the input
mesh agigenfunctionsf its Laplacian matrix.

Meshing with Quadrilaterals. Geometry images [Gu et al. 2002]
produce a fully regular quadrangulation by cutting the mesh into a
single component mapped onto a square domain, whereas multi
chart geometry images [Sander et al. 2003] cut the mesh into regu
larly sampled patches, improving distortion at the expense of patch
continuity. Hormann and Greiner [2000] present a most-isometric
parameterization of individual patches. Boier-Marinal. [2004] .
produce a fully conforming quadrilateral mesh by quadrangulating 3.1 Spectral Surface Analysis
and grid sampling a general patch decomposition.

. The discrete Laplacian operator on piecewise linear functions over
Eck and Hoppe [1996] build a quadrangular base complex by con- triangulated manifolds is

structing a maximal pairing over a triangular base complex, though

such methods cannot guarantee a purely quadrangular result. Shi- Afj = wij (fj — fi), (1)
madaet al. [1998] further explored this approach for planar finite N

element mesh generation, whereas the Q-Morph algorithm [Owen

et al. 1999] enhanced it with an advancing front traversal. whereN,; is the set of vertices adjacent to verteandw;; is a scalar

) weight assigned to the directed edgq ). For graphs, it is custom-
Recent methods have proposed a rather different approach to generary to use the combinatorial weightg = 1/ded(i) in defining this

ating quad-dominant meshes. Alliezal.[2003] numerically com-  gperator. However, for 2-manifold surfaces the appropriate choice
pute integral lines of the two principal direction fields of the surface are the discrete harmonic weights

in a conformal parametric domain. The spacing of these lines is
controlled by the local surface curvature, and vertices are created
where two orthogonal lines intersect. The stability of this method
hinges on carefully smoothing the curvature tensor field from which
the principal directions are derived. Marinov and Kobbelt [2004] Hereo;; andf;j are the angles opposite the edgd). Pinkall and
developed a non-parametric variant. Dogtgal. [2005] similarly Polthier [1993] provide details on the derivation of these weights.
trace curves, though using a harmonic scalar field over the surface
By instead fitting parametric functions to the principal direction
fields, Rayet al. [2005] developed a quad-dominant method that
produces noticeably cleaner meshes than these tracing methods.

1
Wij = E(cotoqj +cotfij). 2

‘This formulation of the Laplacian is clearly a linear operator. We
represent the functiof by the column vector of its per-vertex val-
uesf, rewriting Laplace’s equation as

Spectral Methods. Spectral graph theory is a well-developed 2k Wik ff =1

branch of mathematics and has produced many fascinating re- Af = —Lf, where Lijj=q¢—w; ifedggi,j)eM, (3)
sults [Chung 1997]. As the spectral decomposition of a mesh ex- 0 otherwise.

poses a great deal of its structure, it has been successfully applied

in many diverse ways. It defines a natural frequency domain over The eigenvalued; = 0< A, < ... < An of L form the spectrum
the mesh, providing an attractive formalism for surface smoothing of the meshM and the corresponding eigenvectesse,, ..., ey
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Figure 2: The first 8 non-constant eigenfunctions over a 15
planar grid, plotted as heightfields.

of L define piecewise linear functions ovit of progressively
higher frequencies [Taubin 2000]. These functions are the Lapla-
cianeigenfunctionsf the mesh.

Laplacian eigenfunctions represent the natural harmonics of a
shape; in the physical domain they are the vibrational modes of
the surface. For a planar grid, the eigenvectork @fre the basis
functions of the discrete cosine transform (see Figure 2). Similarly
for a sphere or torus they are, respectively, the discrete spherical an
toroidal harmonics. The eigenvalues identify the squared frequency
of the corresponding eigenfunction.

For our goal of producing a well-shaped quadrangulatioMof

Laplacian eigenfunctions have several crucial properties. Their crit- |

ical points are well-spaced over the surface. Minima and maxima

are interleaved in such a way that high valence nodes are extremely

rare, except in cases where they are geometrically desirable. Multi-

saddles almost never arise, thus practically guaranteeing that extra

ordinary points can only occur at extrema. Without these properties

3.2 Multiresolution Spectral Analysis

Solving for a substantial number of eigenfunctions on a large mesh
can be quite costly, as the running time of the eigensolver will be
super-linear in the number of eigenvectors being computed. Fortu-
nately, these eigenfunctions are an intrinsic property oftiepe
allowing multiresolution techniques to overcome this performance
bottleneck.

As a general rule, surface simplification methods remove high fre-
quency detail while preserving low frequency shape, and so should
preserve the low end of the mesh spectrum. Figure 4 demon-
strates this phenomenon in practice. We produced multiple ap-
proximations of the kitten model shown in Figure 1 using the QS-
lim algorithm [Garland and Heckbert 1997]. The spectral plots of
mass-adjusted eigenvalues, which are simply scaled by the frac-
tion of vertices remaining, are extremely similar, even after aggres-
sive simplification. The number of critical points in the complex
for each frequency—after noise removal; see Section 4.2—are also
quite consistent across the various resolutions.

Kitten - Spectrum Kitten - # of Critical Points
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Figure 4: Mass-adjusted spectra and critical point count for the first

80 eigenfunctions of a progressively simplified model.

the Morse-Smale complex can produce an extremely poor quadran-

gulation of the surface.

It is also important to note that the eigenfunctions occur in order
of increasing frequency, and hence in (roughly) increasing order of
critical point count. Specifically, it is known that the number of
nodal domains of the eigenfunction with eigenvalyeis at most

k [Courant and Hilbert 1953], although this is not a sharp upper
bound. Thus it is fairly easy to select an eigenfunction of a desired
complexity. This is also important from an efficiency standpoint, as
it means we only need to compute the fikdow frequency eigen-
vectors of the matrix. For this, we use the®ack sparse eigensys-
tem solver, which implements an efficient iterative Arnoldi method.

In practice, we are generally interested in producing relatively
sparse quadrangulations. We find that for most surfaces eigenfunc
tions in the range 40—80 will produce the most desirable complexes.
Simple surfaces (sphere, torus) work well with lower harmonics

whereas higher genus surfaces require higher harmonics. To cap-

ture features such as those of the polytope shown in Figure 3, for
example, one needs more nodes and hence a higher frequency.

Figure 3: Surfaces whose “ideal” complex contains more nodes
require higher frequency eigenfunctions. Here we see the 10th,

46th, and 108th harmonic of a sphere, dodecahedron, and corner

cut icosahedron, respectively.

When remeshing a surface, we typically want to find the small range
of eigenfunctions that will produce complexes with a given number
of critical points. Our observation above leads to a very efficient
way of finding this narrow frequency band. We coarsen the model
to a small size, while preserving the topological type of the surface.
On this coarse mesh, we compute the fikgigenfunctions, their
eigenvalues, and Morse-Smale complexes. We can now select a
target eigenvalué. based on the number of critical points in the
corresponding complex.

Given this target eigenvalue, we can compute a small number (e.g.,
20) of eigenfunctions on the original mesh with eigenvalues close
to A. We do this by using apectral shiff a feature supported by
the ARPACK solver. If A is an eigenvalue df with eigenvectoe,

theneis an eigenvector ofL — ol) with eigenvalugA — o).

(L—ocl)e=(A—o0)e 4
Therefore, we can shift by the ideal frequenc§ and thek’ eigen-
values with smallest absolute value are those closest to the ideal fre-
quency. Overall, this process takes less than 2 minutes for a model
with 130,000 vertices.

Spectral shifting can also align eigenfunctions to user-defined fea-
tures, such as sharp corners in CAD models. By applying an ad-
ditional shift only to vertices on feature lines, the gradients of the
eigenfunctions start to align with feature edges. Such a partial shift
can be interpreted as giving feature vertices a smaller weight [Ko-
ren et al. 2002], making them more likely to become eigenfunction
extrema that the Morse-Smale complex samples at a higher rate.
Although, such a feature driven approach is not our focus we have
included a small example in Figure 17 to demonstrate the versatility

of this approach.
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4 Building a Quadrangular Base Complex cancellations by theipersistencdEdelsbrunner et al. 2002]—the
difference in function value between the two critical points they
remove—and greedily cancel critical points in order of increasing

Given a Laplacian eigenfunction, this section describes how to con- persistence, up to a noise threshold.

struct its Morse-Smale complex to coarsely quadrangulate the sur-
face. It begins by reviewing the formal definition of the Morse- The amount of noise we have encountered in practice is minimal
Smale complex and an algorithm for topological noise removal. It and well separated from the signal. To find a good threshold we
also describes the construction of a second family of quasi-dual first normalize all persistences with respect to the maximal spread
complexes to increase the diversity of the pool of potential quad- in function value. This allows us to set coarse bounds on the mini-
rangular base meshes. The geometric embedding of the complex isnal and maximal allowed noise threshold valid for all models. For
further improved in Section 5. all examples in the paper we have used a range of 0.05-0.5% persis-
tence. Within this range we optimize the complex based on mesh
quality criteria. In particular, we have found that the only prob-
4.1 The Morse-Smale Complex lematic configurations are valence-2 extrema like those shown in
Figure 5. We therefore, pick the threshold as the minimal persis-

(Morse-Smale) function over a manifold, defined formally as the valence-2 extrema.

refinement of its ascending manifolds by its descending mani- |, general, not every valence-2 extremum can be removed by choos-
folds, but computed more practically by tracing lines of steepest jnq'an appropriate noise threshold. It might have high persistence
ascent/descent. Given a function defined on the vertices of a trian- 54 pe vital for a balanced base mesh. In this case. we perform an
gulated manifolavl, a vertex is labeled enaximum/minimur its anti-cancellation(the inverse of cancellation) of the neighboring

function value is higher/lower than those of its neighbeegular extremum with highest valence to raise the valence of the problem

if its lower neighbors form a connected chain, ansaddleother- — oyiremum to three. A similar refinement mechanism is described in
wise. We compute steepest ascending/descending lines starting i 5 3 hyt driven by parametric distortion rather than valence.
each chain of higher/lower neighbors of all saddles until we reach

a maximum/minimum. In general, these lines segnivmito four-
sided regions with two opposing saddles, a maximum, and a min- 4
imum as corners. In practice, a number of special cases exist and "~

care must be taken to correctly handle degeneracies in the func- . . ) . .
tion [Edelsbrunner et al. 2003; Bremer et al. 2004; Ni et al. 2004]. The set of all eigenfunctions defines an entire family of complexes
' ' over the surface, which we refer to as gmémal complexes. From

each primal complex, we can also derivajaasi-dualcomplex.
Since the vertices of a Morse-Smale complex are two-colorable
(extrema being one color and saddles the other) and saddles have
. ) . . valence four, computing the minimum-maximum diagonal within

In principle, our eigenfunctions are smooth and we encounter in- gach Morse-Smale region creates another purely quadrangular com-
creasing numbers of critical points at progressively higher frequen- ey This quasi-dual complex contains about half the vertices (only
cies. However, numerical issues can result in the presence of highihg extrema) of the original complex and one patch per original sad-
frequency noise, which manifests itself as clusters of superfluous dle. In the (extremely rare) case of a multi-saddle, computing diag-

critical points (see Figure 5a). onals yields a polygonal patch that can be trivially quadrangulated.
.b..f: '
Ae

— . . Figure 7 illustrates the process for a small example.
(e g
>lelte SIS slela
i \Sea

3 Quasi-Dual Complexes

4.2 Topological Noise Removal

s

i

(a) Initial noisy complex (b) Denoised complex

Figure 5: The 30th eigenfunction of a triple torus shows a typical
noise pattern (a) that we filter out by topological simplification (b). Figure 7: A primal complex (a) is replaced with min-max diagonals
(b) to produce the quasi-dual complex (c).
© minimum These quasi-dual complexes serve to expand the pool of possible
© maximum base meshes. This is advantageous, since it expands the symmetries
& saddle of the object that can be captured. For instance, it is the quasi-
dual rather than the primal family that yields optimal complexes on
the torus (see Figure 8). The quasi-dual transformation effectively
reverses one step of 4-8 subdivision [Velho and Zorin 2001], and
rotates the initial complex by /4. Quasi-dual complexes are also
more compact than primal complexes. Roughly half the critical
points of a Morse-Smale complex will be Morse saddles, and hence
valence four nodes in the complex. Quasi-dual complexes do not
contain such additional saddle points.

e

©

Figure 6: Morse-Smale complex before and after cancaling
One saddle, one extremum, four paths, and two cells are removed.

To remove the extraneous critical points we aaacellationsthat
simplify the Morse-Smale complex [Edelsbrunner et al. 2003; Bre-
mer et al. 2004]. Cancellations can be seen as a double edge conWe construct quasi-dual complexes after denoising the Morse-
traction that removes a connected saddle-extremum pair, all pathsSmale complex. During iterative relaxatio$b(2), we may need
incident to the saddle, and two 2-cells (see Figure 6). We rank to perform anti-cancellations on the quasi-dual complex. These
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are induced directly by the anti-cancellation of the corresponding

Morse-Smale complex. In particular, each anti-cancellation on a

quasi-dual complex adds one extremum and one patch and is akin
to a traditional vertex split.

(a) Primal (b) Dual

(b) (©)

Figure 8: Complexes of torus eigenfunctions 8 and 16.
Figure 10: A single relaxation step: (a) parameterization, (b)
boundary adjustment, and (c) node relocation.

5 Parameterization and Remeshing

all charts to form a right-handed coordinate system with the surface
normal. Every vertex that is not a node of the complex is contained
within exactly one patcl, and assigned parametric coordinates
u® = (s*,t*). The parametric coordinates for nodes of the com-
plex are always constrained to lie at the corner® cdlthough they

will have distinct parametric coordinates in each of their incident
patches.

At this point, we have constructed a quadrangular base complex
over the surface. We must now build a parameterization over this
complex. We must also correct and optimize the geometry of
the complex’s embedding on the surface. For all but the simplest
shapes, some paths connecting extrema will be less than satisfac
tory. As they follow the gradient field of the eigenfunction, they
may not follow the surface shape in a natural way. It is also possi- For the particular configuration of patch origins marked in Figure 9,
ble for multiple paths to merge and follow the same edge chain, thus the two coordinate transition functions are

producing degenerate patches. These kinds of artifacts are clearly

evident in the complex shown in Figure 11a, for example. P (8%,1%) = (s* —1,t%), Pay (8%,1%) = (s*,1—-t%). (5)

We resolve both problems simultaneously using a globally smooth
parameterization algorithm inspired by the work of Khodakowetky

al. [2003]. We construct a parameterization over the initial quad-
rangular complex, and then use this parameterization to correct theye solve for the parameterization using a linear system with the

patch shapes. We iterate this relaxation procedure until conver-ysya| structure [Floater and Hormann 2004]. For each vertex
gence, at which point all patches will be valid and well-shaped. which is not a node of the complex, we have

All other markings produce simply the inverses of these functions
and/or compositions with rotations kf /2.

o B o) _
5.1 Globally Smooth Parameterization if GNiW" (((Pﬁ“uj )-u ) =0, ©
For each quadrangular patBy, we seek to construct a parameteri-  wherewj; are the discrete harmonic weights (Eq. 2) normalized to
zationg, mapping the patch onto the unit squéxg = [0, 1] x[0, 1]. sum to 1. Other choices are possible, notably mean value coordi-
We also define theansition functiongg R? — R? mapping the nates [Floater 2003], but we find that quasi-conformality of discrete
coordinates of a point iRy to the corresponding coordinates w.r.t.  harmonic weights yields better elements in the final mesh.
Ps (see Figure 9). The transition functions between two arbitrary . . .
patches can be determined by pair-wise composition along a pathNotlce that some of the; coordinates may be known quantities, if
in the dual graph of the complex. Note, however, that the resulting they are vertices that are nodes of the complex. Furthermore, they

functions will only be path-invariant in the absence of extraordinary d0 not have unique coordinates, since they have different coordi-
points. nates in each of their incident patches. We eliminate these variables

from the system by rewriting the parameterization system as
To begin constructing coordinate charts for each patch, we arbitrar-

ily mark one corner as the origin of its coordinate system. We orient u® — z Vi (q)ﬁautj%) _ % u}x’ @
(I.B)eA
fa <~ whereC; are the members o, that are corners and} are the rest.
* This equation gives us 2 rows of a22n linear system.
o)
J/ 5.2 Iterative Relaxation
Pp L . . - -

I Dy At this point, we have an initial parameterization of the complex.

As noted earlier, the complex itself is likely to be deficient in that
multiple paths may merge, thus causing degeneracies in the patches.
Furthermore, this is likely to cause the parameterization itself to be
non-bijective, and hence invalid.

Figure 9: We define a coordinate chayt for patchP,, as well as
transition functiong,g to the chart of each adjacent pateh
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We have developed an iterative relaxation procedure to resolve
these degeneracies that

1. builds a parameterization by solving linear system Eq. 7,
2. swaps vertices across boundaries to adjust patches, and
3. relocates nodes of the complex to better positions.

This process repeats until it computes a parameterization (1) that is
not improved by vertex swapping (2) or node relocation (3).

Our basic approach to the problem is inspired by that taken by Kho- (a) Initial complex (b) Final complex

dakovskyet al. [2003]; however, two distinctive features of our  Figure 11: Iterative relaxation on the initial complex produces well-
problem lead to a fairly different algorithm. First, we are work- shaped final patches equipped with a parameterization.

ing with quadrangular rather than triangular complexes. Second,
we encounter, and must successfully repair, far more significant de-
fects in the initial complex. Whereas Khodakovskyal. were able

SO . ; . the corresponding boundary Bfcrosses the same mesh edge as the
to craft a decimation technique that considered patch quality and b 9 v 9

ic d ion in th . f the b d ) patch boundary in question. To select the best candidate position,
parametric distortion in the construction of the base domain, We \yq yish to choose the one whose parametric coordinates are closest
begin with a complex built by a purely topological method that is 5 5 corner oD. Each non-node candidate is already assigned co-

unaware of such geometric issues. Consequently, we must performy inates hy our parameterization. For the node itself, we compute
far more substantial node relocations and may even need to refine,,, ginates using a mapping of its incident patches into the com-

the complex during relaxation. plex plane by the power transforgfk [Khodakovsky et al. 2003;
Ying and Zorin 2004].

5.2.1 Adjusting Patch Boundaries For some number of nodes with incident merging paths, their cur-
rent location will prove preferable to the alternatives provided by

The essential problem with the parameterization computed over their branch points. There are also potentially many nodes whose

a degenerate complex is illustrated in Figure 10a. For each ver-incident paths do not merge. To locally optimize the complex, we

tex, there is some patd®, such that the parametric coordinates of f’i||0W aII_such nodes to relocat_e to any |_mmed|ately adjacent vertex

the vertex undep,, fall within D. We refer to this vertex am- if that will reduce the parametric distortion.

rangewith respect to this patch. As we clearly see in Figure 10a,

where vertices are color-coded according to the patch for which

they are in-range, the in-range regions can differ substantially from 5.2.3  Refining the Complex

the patches themselves. The fundamental goal of relaxation is to

conform the patches to their in-range vertex sets. In this first step |n some circumstances, relaxation will converge while merged
of relaxation, we adjust the boundaries by iteratively swapping ver- paths still remain. This is essentially the result of either (1) nodes
tices between patches. of unnecessarily high degree or (2) patches of such size or com-
plexity that the linear parameterization method is unable to find a
valid parameterization. We address this problem by locally refin-
5 ing the complex. We refine by topological anti-cancellation, the
u; € D). Itisimportant to note that since multiple patch boundaries inverse of the cancellation operation discussed in Section 4. Note
may cross the edge, j), the patch into which moves may notbe  that the refinement operations on primal and quasi-dual complexes
adjacent to its current patch in the complex. We continue swapping are slightly different.

vertices until no more swappable vertices remain.

A vertexi may be swapped across an edgg) wherei € P, and
j € Pg ifitis out-of-range inP, but in-range irPg (i.e.,u*¢Dand

As long as the original complex was not unreasonably coarse, we
can expect relatively few refinements to be necessary. Therefore,
we perform only a single refinement at a time. We consider all
branch points that were considered as targets for relocation, and
refine the one furthest from its associated node. Having performed
this refinement, we resume iterative relaxation.

5.2.2 Relocating Nodes of the Complex

After swapping, the overall shape of patches in the complex is gen-
erally improved. However, there will still be patch boundaries that
merge and follow the same edge sequence. Indeed, the extent ofFigure 11 shows a sample of the results produced by our iterative re-
such merging is likely to increase in areas where patch corners dolaxation algorithm. We begin with an initial complex that may have
not coincide with the natural “corners” of the in-range vertex set. poorly-shaped patches, such as the patch near the bunny’s shoul-
We can see an example of this behavior in Figure 10b. Having der. After relaxation, all patches are well-shaped and we have also
performed one round of boundary adjustment, the patch shapes areonstructed a globally smooth parameterization over the surface.
markedly improved. However, poorly placed nodes, most notably

the one on the nose, produce path merging. Consequently, in this

second stage of relaxation we seek to reposition nodes of the com-5 3 Mesh Generation

plex wherever necessary.

For each node with incident merging paths, we construct the set of Once a valid parameterization has been built and degeneracies in
branch points at which the merged paths diverge (see Figure 10).the complex have been removed, we can produce a final semi-
We consider each branch point as a potential target to which we regular mesh. For each path in the complex, we must trace out
might relocate the current node. The node’s current position is also the corresponding parametric boundary over the mesh. This gives
a potential target. A relocation candidate is valid if the parameter- us surface patches, each of which is equipped with a parametric
ization is locally bijective in at least one incident patch sector and mapping onto the unit square. Given a user-specified dedsitye
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Figure 12: Remeshing the torus with progressively higher harmon-
ics, with both primal (above) and quasi-dual (below) complexes.

construct a reguladtx d grid of quadrilaterals in this parametric do-
main and map their corners back onto the surface, thus producing
our output mesh. By sampling at a fixed rate, we can trivially guar-
antee that the final mesh is fully conforming. We can also guarantee
that extraordinary points can only occur at nodes of the complex. In
fact, we expect extraordinary points only at extrema of the eigen-
function, as Morse saddles will have valence four.

5.4 Selecting a Base Complex

L-218500- SIGGRAPH 2006 -

T

Figure 13: A Moai statue is remeshed and then rendered as a
Catmull-Clark surface.

symmetries of the surface, and in this case provide a nearly ideal
mesh of the torus.

Figure 13 shows a quadrangulation of a scanned Moai statue. The
raw surface data (on which the raw complex is superimposed) is
fairly noisy and the mesh is moderately irregular. Nevertheless, our
quadrangulation algorithm is quite stable. The final mesh is highly
regular, containing only 12 extraordinary vertices and no vertices

This process of parameterization, relaxation, and remeshing can beVith valence higher than 5. The individual elements are also gener-

applied to any of the primal or quasi-dual complexes defined over
the spectrum of the surface. However, we are interested in picking
the eigenvector that will produce the best result. We have already

discussed in Section 3 how we select a small frequency band ac-

cording to a target number of critical points in the complex. Within
this band, we normally select the complex with the lowest paramet-
ric distortion. Low distortion leads to well-shaped elements and
we find that it is generally well correlated with final RMS error.
This is most accurately done after iterative relaxation is complete;
however, using the distortion after a single relaxation step produces
substantially the same ordering of complexes at a fairly low cost.

In certain cases, we may specifically desire a complex whose edges

are aligned with a predominant direction, as in Figure 13, or with
ridge lines, as in Figure 17. It is a straightforward process to se-
lect the eigenfunction whose gradient field most closely follows any
such user-specified orientation.

6 Results

We begin our analysis of the performance of our method with the
torus, shown in Figure 12. This is a simple surface whose eigen-
functions, as we have mentioned earlier, are discretizations of con-
tinuous toroidal harmonics. The spectrum of the torus is in fact
highly structured, and the eigenfunctions and complexes we extract
exhibit near-perfect symmetry (see Figure 8). This regularity and
symmetry are apparent in the remeshing output as well. We gener-
ated meshes using, from left to right, the 8th, 16th, and 32nd eigen-
functions. Each quadrangular patch was resampled with>a® 8
grid of quadrilaterals. Each of these meshes consists exclusively
of valence-4 vertices. Higher harmonics lead to more patches in

ally very well-shaped, with an average internal angle o789

(a) Surface (b) Raw complexc) Final complex (d) Remeshed
Figure 14: Remeshing a genus-1 statue of a dancer.

Further remeshing results can be seen on the kitten in Figure 1 and

the base complex and more quadrilaterals in the final mesh. Wethe dancer in Figure 14. These surfaces each exhibit fairly complex
can also clearly see that the quasi-dual complexes capture differentgeometry, which our quadrangulation is able to capture and pre-
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serve during resampling. The dancer is particularly challenging as it
has significant elongated features protruding from the main body of
the surface. If these are not captured well by the base complex, we
would experience very high parametric distortions, and hence very
poor meshes, in these areas. However, we see that the surface it
covered at a reasonably uniform rate, indicating that the base com-
plex has done a good job of identifying and capturing these features.
Similarly, both examples are genus-1 surfaces, having large topo-
logical handles that can degenerate significantly if the base complex

does not adequately capture this topological detail. Again, we see - L“‘ “w W
that our base complex and the derived remeshing result samples this (a) Original models (b) Projected complexes
feature quite well. Figure 16: Our eigenfunctions and complexes are shape-dependent.

each case, the complex follows the overall shape of the surface. In
Figure 16b we see complexes for the two sitting poses mapped onto
the reference pose. Clearly, the eigenfunctions themselves are quite
different and the complexes still reflect the shapes of their original
poses. In particular, notice that the reference complex exhibits near
perfect left-right symmetry while the others do not. And in those
parts of the model that do not change, the complexes remain es-
sentially the same. For an example, see the right front paw of the
sitting cat, whose shape and complex is identical (up to sign) to the
reference pose.

Figure 15: Remeshing a genus-22 “heptoroid”.

In Figure 15 we see a challenging high-genus model. The genus of )
this “heptoroid” surface is 22, and it has many hyperbolic regions. ™
Despite the topological complexity of this surface, we are able to N—

produce a well-shaped mesh with a relatively modest 175 extraor- 4
dinary vertices and a maximum vertex degree of 7.

Vertices Time (s) Figure 17: Feature-sensitive remeshing using a quasi-dual complex.

In Out Ext. Freq. Eigen. Complex Relax

As discussed in Section 3.2, partial shiftslotan align its eigen-
:;’L‘: . Olggg ég;: 12 2@‘; 22‘; e 352289 0-33627 functions with features. Figure 17 shows an example of a sphere
itten 10”000 6600 15 5lp 059+117  1.58+347 2808 Wlt_h a toroidal cut-out Whe_re all vertices along creases have been
dancer 24,998 16272 33 64p 057+267 162¢806 44143 Shiited byo = 1. The resulting complexes are quite different from
bunny 72,023 10370 26 46p 059+102 1554240 125915 those of anunmodified sphere and many are perfectly aligned with
the features. The quasi-dual complex shown is part of a large sym-
metry class of complexes—which we discover by examining their
gradient directions along the feature curves—all showing essen-
tially the same connectivity at different frequencies.

Table 1: Performance data for our system on results shown.

Table 1 summarizes the performance of our system, reporting for
the examples shown the input vs. output complexities, the number
of extraordinary vertices (which we note is universally low), and Vertices Angles Edges Efficiency
the spectral index of the eigenfunction used to generate the com- Total Ext.  Mean
plex. Running times were measured on a 1.8 GHz PowerPC G5
processor with 2 GB of memory. For each model, we extracted 80 PQD 12,738 175 888 1271 00019 000093 0628  0.328
eigenvectors. For the kitten, dancer, and bunny the table separate EOP 6355 314 884 963 0.0030  0.00074  0.997 0411

. y A ' 3¥SQ 10370 26 899 687 00023 000070 0.968  0.413
the times to produce these 80 eigenvectors on a 1000 vertex approx=
imation and using spectral shifts to solve for the 20 eigenvectors of ) . . -
the full mesh nearest the eigenvalue whose complex on the coarse  1aPle 2: Quality metrics for meshes shown in Figure 18.
mesh best met the target node count, as described in Section 3. The ] ) ] ]
final column reports the time for iterative relaxation and remeshing Finally, we examine the quality of our results in comparison to ex-
including the substantial time spent solving the GSP linear system, isting techniques. We obtained results for the algorithms of Boier-
for which we use WIFPACK. Martin et al. [2004], denoted by the acronym PQD, and Ray

] ) ) ] al. [2005], denoted by PGP, on the bunny madélke our own, the

The eigenvectors of the combinatorial graph Laplacian are depen-pQp method produces a pure quadrilateral mesh, whereas the PGP
dent only on the connectivity of the graph. However, thisigs method produces a quad-dominant mesh. The remeshed surfaces
true of the Laplacian eigenfunctions that we use, which are indeed gre shown in Figure 18, and our measurements of mesh quality are

functions of the shape. To demonstrate this fact, consider the threesymmarized in Table 2 together with histograms of edge length and
poses of a cat shown in Figure 16a. Each mesh has identical con-angle distributions in Figure 19.

nectivity, but substantially different shape. We show the complex
induced by the 61st eigenfunction on each of them. Note how, in  1This mesh differs from the standard bunny; itis denser and has no holes.

c Mean o L2 L21
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7 Conclusions

In this paper, we have outlined a new theoretical framework for
quadrangulating polygonal manifolds. By using Morse theory to
analyze the structure of the Laplacian eigenfunctions of the sur-
face, we are able to produce appealing quadrangulations that arise
directly from the intrinsic shape of the manifold. Our use of the
Morse-Smale complex is topologically robust and guarantees that
the base complex is always quadrangular. We have proposed a new
globally smooth parameterization method for quadrangular com-
plexes that can successfully optimize the shape of even highly
(a) Original degenerate complexes. Finally, we have also demonstrated that
our method produces semi-regular pure quadrilateral meshes that
have far fewer extraordinary points than comparable methods while
maintaining high geometric fidelity.

The results we have presented in this paper open a new line of re-
search aimed at describing and understanding shapes and geome-
try. We have chosen semi-regular quadrangular remeshing as an
example which demonstrates that the Morse-Smale structure of
Laplacian eigenfunctions encodes fundamental information about
'.o’%,;g.:o:é.‘ the shape of a piecewise linear manifold. But more broadly, these
= / results are based on several intriguing properties of the Laplace ma-
s 4 ¢ trix and its eigenfunctions that we have only begun to explore.

L
e e

L
e

TS
X

(c) PQD (d) SsSQ There is much that could be learned from a more thorough the-
oretical understanding of the structure of the Laplacian spectrum.
The majority of results in spectral graph theory tie the Laplacian
eigenvalues to various properties of the graph. The structure of
the eigenvectors is relatively unexplored. A clearer understanding
of the spectral structure should enable us to prove stronger results
Edge length distribution Angle distribution about the quality of the final quadrangulation.

Figure 18: Comparison of meshes generated by PQD [Boier-Martin
et al. 2004], PGP [Ray et al. 2005], and our SSQ algorithm.

We have outlined a basic technique for producing “feature-
sensitive” eigenfunctions. This is clearly an avenue in which sig-
o, A . e . nificant new contributions could be made, as there are certainly ap-
ssQ PGP PQD ssQ PGP PQD plications where some measure of user control over the flow of the
mesh is quite desirable.

Figure 19: Edge and angle distributions for meshes in Figure 18.
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