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Abstract—
Analysis of the results obtained from material simulations is important in the physical sciences. Our research was motivated by the
need to investigate the properties of a simulated porous solid as it is hit by a projectile. This paper describes two techniques for
the generation of distance fields containing a minimal number of topological features, and we use them to identify features of the
material. We focus on distance fields defined on a volumetric domain considering the distance to a given surface embedded within
the domain. Topological features of the field are characterized by its critical points. Our first method begins with a distance field
that is computed using a standard approach, and simplifies this field using ideas from Morse theory. We present a procedure for
identifying and extracting a feature set through analysis of the MS complex, and apply it to find the invariants in the clean distance
field. Our second method proceeds by advancing a front, beginning at the surface, and locally controlling the creation of new critical
points. We demonstrate the value of topologically clean distance fields for the analysis of filament structures in porous solids. Our
methods produce a curved skeleton representation of the filaments that helps material scientists to perform a detailed qualitative and
quantitative analysis of pores, and hence infer important material properties. Furthermore, we provide a set of criteria for finding
the “difference” between two skeletal structures, and use this to examine how the structure of the porous solid changes over several
timesteps in the simulation of the particle impact.

Index Terms—Morse theory, Morse-Smale complex, distance field, topological simplification, wavefront, critical point, porous solid,
material science.

1 INTRODUCTION

There exists substantial interest in simulations of particle impact. At
the nm scale, particles made of few-thousands of atoms can be used
to smooth or create nano-scale relief on a variety of surfaces [17]. At
the macroscopic scale, particles of mm size are often used to mimic
impact of a variety of projectiles, from bullets to meteoroids [21].
Recently, the Stardust mission explored the craters left by microme-
teoroids, reaching sub-micron sizes, in the frame of their comet dust
catcher [16]. This dust catcher was made of aerogel, a silica foam
where the comet particles, moving at ∼6 km/s, were slowly decel-
erated and stored for recovery after the aerogel returned, and were
subsequently analyzed at several laboratories worldwide.

Understanding of such deceleration and storage is based on exper-
iments and continuum-scale models of particle impact. Such models
require equation of state and other thermodynamic input, and might
fail at scales where atomistic effects would preclude continuum coarse
graining.

To understand possible limitations of continuum models at the
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nanometer scale, we have carried out classical molecular dynamics
simulations of the impact of a dense grain into low density foam (25%
of solid density). Both the grain and the foam are described by Mishin
et al. [20] an embedded atom potential for copper, which reproduces
well shock data [3]. The size of the simulated box was 70 nmx70
nm x 80 nm, and the impact velocity of the 4 nm radius, porosity-
free, spherical particle was 5 km/s, which makes the impact super-
sonic (considering the velocity of sound in copper is 4 km/s). Due to
this impact, a crater is formed. The analysis of this data must answer
the following questions: How can we quantify the loss of porosity of
the material? How does the filament density profile of the material
change? What is the portion of the material that is affected by the im-
pact crater? How does the structure around the impact crater change?
We answer these questions using two methods that compute a curved
skeleton and a clean distance field representation of the data. These
methods naturally capture the structure of the material, and hence are
ideal for this kind of analysis.

We focus on analysis of the filament structure of a porous solid. The
porous solid is represented as a distance field over a volumetric grid
that is generated based on distance to the interface surface between
solid material and empty space. The interface forms a surface that rep-
resents the filaments of the porous solid. The tools we have developed
are used to recover the latent structure from the experiment. However,
several factors make this difficult. First, the scale of the structure we
wish to identify is not known. While scientists may have a general
idea of the size and distribution of the structure, any analysis based on
such guesses would be skewed. In addition, the analysis tools should
be valid for any size and distribution of the structure. Second, there is
inherent instability in any choice of criteria for identification of such a
structure. There are several classes of methods for identifying curved
skeletal structures [8], however, they assume a surface representation
is given, and construct a skeleton based on that surface. The interface
surface of the distance field representing the porous material ideally
can be extracted as surface for isovalue zero. However, any choice of
isovalue to select a “base surface” is unstable; Figure 1 shows how
small changes in isovalue can produce profound differences between
the resulting structures being the basis for analysis. Furthermore, the
distance field itself has noise, artifacts from computation, and arti-
facts from discretizing a continuous function onto a grid. As a result,
straightforward analysis of the distance field yields an excess of crit-
ical points that do not represent physically meaningful and relevant



features of the function.
We use a modified distance field for our analysis that contains a

minimal set of critical points corresponding to the features of the func-
tion. The clean distance field is a distance field constructed with a
distance metric that is similar to the Euclidean metric, except where
the function must be constrained to ensure proper critical point behav-
ior. A two-dimensional manifold defined by points ε-distance from the
skeleton structure of this function is a reference for a family of home-
omorphisms for all contours the field. Our first method computes the
Morse-Smale complex using a modified version of the algorithm pre-
sented in [15], and filters the arcs to extract this skeleton structure.
This method allows us to choose between levels of analysis, and also
hints at the quality of the choice, i.e., we introduce filter operations to
allow the scientist to control what is viewed as noise or artifact, and
what is viewed as a feature. Our second method generates a clean dis-
tance field using a propagation-based approach. We show that our two
methods compute the same skeleton, and produce an analysis structure
for the porous solid that is stable.

1.1 Related work
In distance fields, critical points correspond to changes in the behavior
of isosurface components. For example, for bivariate functions, upon
increasing the function value, minima create new isosurface compo-
nents, maxima destroy components, and saddle points merge or split
isosurface components. A purely geometric approach to simplification
is able to remove small topological features but does not provide the
desired level of control. Considerable work has been done on topolog-
ical simplification of scalar functions. Initial work focused on simpli-
fying topological features or preserving them while simplifying mesh
geometry [6, 12]. Two data structures are commonly used for explic-
itly storing topological features: Reeb graphs and Morse-Smale (MS)
complexes.

The Reeb graph [22] traces components of contours/isosurfaces
as one sweeps through the allowed range of isovalues. In the case
of simply connected domains, the Reeb graph has no cycles and is
called a contour tree. Reeb graphs, contour trees, and their variants
have been used successfully to guide the removal of topological fea-
tures [7, 4, 13, 27, 28, 30]. The MS complex decomposes the domain
of a function into regions having uniform gradient flow behavior [24].
It has been used recently to perform controlled simplification of topo-
logical features in functions defined on bivariate domains [2, 11], in
trivariate domains [14, 15], and for purposes of shape analysis [5].
The MS complex allows the simplification to utilize a global view of
the function and its spatial distribution for detecting, ordering and re-
moving features along with the ability to restrict the simplification to
a local neighborhood of the non-significant feature. Reeb graph-based
simplification methods do not enjoy these benefits. Furthermore, when
applied to trivariate functions, they are limited to detecting and sim-
plifying features that are associated with the creation and destruction
of isosurface components. These features are represented by pairs of
critical points consisting of one saddle and one extremum. The MS
complex is able to detect genus changes within the isosurface, which
are represented by saddle-saddle pairs. This is crucial in analysis of
the porous solid, where features are defined by filaments and tunnels
in the isosurface. We use this more comprehensive approach for sim-
plifying scalar functions in three variables.

Sethian computed the distance field from a surface using advancing
fronts and a priority queue [23]. These distance field calculations are
a numeric solution to the Eikonal equations [29], and their efficiency
was improved to linear time in [31]. Simplifying distance fields has
also been studied, mostly in the context of simplifying particular iso-
surfaces. Modification of the scalar field to remove isosurface compo-
nents was presented in [25], where regions are carved permitting only
a fixed number of topology changes to the isosurface. This was refined
with a bounded error in [26]. The drawback of this approach is that
it allows only a single level of resolution of simplification, and it is
not guaranteed to remove all low persistence features. Simplifying a
single surface to remove handles was also studied in [13, 30].

Computation of the Morse-Smale complex for volumetric domains

Fig. 1. Dependency of extracted core structure and isovalue. The dark
lines indicate the structure that we view as a valid approximation of the
actual core structure (curved skeleton) for a specific isovalue. A small
change in isovalue can have a dramatic change on the core structure.

was first described in [10]. Efficient algorithms for computation and
simplification of 3D Morse-Smale complexes were described in [14],
and extended to larger datasets in [15]. We extend these results adding
extended controls and analysis tools to focus exploration according to
the particular needs of the application.

1.2 Results
We present two methods for the generation of clean distance fields,
and we demonstrate their usefulness by finding the filament structure
for a porous solid. Our first method uses the Morse-Smale complex
to display a distribution of critical point pairs of a standard distance
field, and introduces filtering operations to extract any apparent fea-
tures. We show how the arcs representing the filament structure for
the porous solid can be recognized using this analysis tool and how
to perform topology-based simplification to find them. Our second
method proceeds by propagating an advancing front for the particular
task of creating a clean distance field. This is an efficient method that
modifies the function itself, and also finds the filament structure for
the porous solid. We compare the two techniques in terms of level of
control and performance, and we define a set of criteria for determin-
ing a meaningful distance measure between the curved skeletons they
produce.

Application of these methods to the pore impact dataset reveal an
important fact: there is significant densification of the foam below
the crater wall, while the structure of the foam outside the immediate
crater is unaffected. By constructing the analysis structure for relevant
timesteps, and applying our structural comparison technique, we are
able to identify the changes in the core structure in a quantitative as
well as visual manner.

2 TOPOLOGICAL SIMPLIFICATION

A typical distance field has noise or artifacts from construction, or
artifacts from quantization. Critical point analysis on such a function
relies on topological simplification, i.e., the ability to identify which
critical points represent actual features, and selectively remove those
that do not. We use the foundation of Morse theory to achieve this
simplification.

A smooth scalar function f : M→ R defined on a smooth three-
dimensional manifold M is a Morse function if none of its critical
points are degenerate i.e., the Hessian matrix at all critical points is
non-singular. The distance field is computed and available to us as a
sample over a hexahedral grid. We simulate a perturbation [9, Sec-
tion 1.4] to ensure that all critical points are non-degenerate and hence
identify the given distance field as a Morse function. We use ideas
from Morse theory to control explicitly the topology of the distance
field. We use the phrase “topology of a scalar function f ” to refer
to the topological structure of isosurfaces of f . Critical points of f
determine topology changes in isosurfaces as they sweep the domain.

To gain intuition, we first describe the topological simplification as
applied to a univariate g, see Figure 2. Critical points (maxima and
minima) of g partition the domain into monotonic regions. This par-
tition is stored as a graph whose nodes are the critical points of g and
edges represent the monotonic curves. Pairs of critical points identify
topological features of the function. The size of each feature is defined
as the absolute difference in function value between the two critical
points and is called the persistence of the critical pair. The smaller-
sized features are not significant, probably due to noise in the data,



(a) (b) (c)
Fig. 2. Multi-scale analysis of a univariate function. (a) Visualization of the function. (b) Critical points of the function partition the domain into
monotonic regions. Pairs of critical points identify features, whose sizes are equal to the difference in function value of the critical points. (c)
Small-sized monotonic regions are explicitly identified and removed, leaving behind the “significant” features.

and can be removed explicitly to obtain a global view of the function.
Removal of critical pairs can be implemented in a purely combinato-
rial fashion by updating the graph representation of the partition. A
formal Morse theory-based approach to this multi-scale analysis helps
in extending the topological feature-simplifying operations to bivariate
and trivariate functions.

2.1 Morse-Smale complex
Morse theory studies the relationship between critical points of a
Morse function and the topological structure of its domain space [19].
The Morse Lemma states that in the neighborhood of a critical point p
of f , the function can be rewritten as a quadric

f (x,y,z) = f (p)± x2± y2± z2.

The index of p is equal to the number of negative signs in the above
expression. Critical points of index 0,1,2, and 3 are called minimum,
1-saddle, 2-saddle, and maximum, respectively. This characterization
of critical points was transported to piecewise-linear functions by Ban-
choff [1] and later used by Edelsbrunner et al. [10, 11] to obtain com-
binatorial algorithms for characterizing critical points and to compute
the Morse-Smale complex of Morse functions. The Morse-Smale com-
plex (MS complex) decomposes the domain M into monotonic regions
and represents the topological structure of f .

An integral line of f is a maximal path in M whose tangent vectors
are equal to the gradient of f at every point of the path. Each integral
line has an origin and a destination at critical points of f where the
gradient becomes zero. A cell in the MS complex is a set of all inte-
gral lines that share a common origin and destination. For example,
the 3-dimensional cells of the MS complex are sets of integral lines
that originate at a given minimum and terminate at an associated max-
imum. The cells of dimensions 3,2,1, and 0 of the MS complex are
respectively called crystals, quads, arcs, and nodes.

2.2 Multi-scale analysis
The Canceling Handles Theorem [19, Section 3.4] leads to an algo-
rithm for simplifying the MS complex and hence the topology of f .
This theorem essentially states the following:

CANCELING HANDLES THEOREM. Critical points can be destroyed
in pairs that differ in index by one and are connected by an arc
in the MS complex. The cancellation is numerically realized by
a local perturbation of the gradient field.

Given an ordered list of critical pairs, the MS complex can be sim-
plified by canceling the critical point pairs in succession using a com-
binatorial algorithm developed by Gyulassy et al. [14]. This algo-
rithm constructs an artificial complex by introducing “dummy” criti-
cal points at the vertices of a barycentric subdivision of the input cube
mesh. The index of criticality of the dummy critical point is equal
to the dimension of the mesh element and the function value at the
dummy nodes are chosen such that they have an infinitesimally small
persistence (persistence being the absolute difference in function value
of the cancelled pair or critical points). The MS complex is obtained in
a pre-processing step by canceling all ε-persistence critical pairs (ε is
infinitesimally small). The critical pairs are ordered based on their per-
sistence and given a persistence threshold, all critical pairs below this

threshold are canceled. The critical pairs are classified into two cat-
egories: saddle-extremum and saddle-saddle. Saddle-extremum pairs
consist of a minimum and a 1-saddle or a maximum and a 2-saddle.
The two types of saddle-extremum pairs are dual to each other. The
duality is given by a negation operator acting on the function that maps
critical points of index i to index 3− i. A saddle-saddle pair consists
of a 1-saddle and a 2-saddle.

2.3 Filter-driven simplification
Meaningful and important features of a given function are not always
captured by the notion of persistence. For example, a scientist may
be interested in the function behavior within a region enclosed by cer-
tain isosurfaces. In this case, simplification should ideally preserve
the topological structure of the isosurface components while removing
noise in the volumetric region inside and outside. Extrema with func-
tion value within a given range may correspond to relevant features,
and in this case simplification should leave these extrema unaffected.
Both cases arise for the distance fields that we study. In fact, features
may arise in locations not initially predicted. The MS complex is a
useful tool in identifying such features since it provides a full charac-
terization of the gradient flow behavior (when viewing the function’s
gradient as a flow field). Therefore, analysis of the critical point pairs
and arcs of the complex can lead to better understanding of the actual
locations of the features, and where to apply topological simplifica-
tion.

The porous solid dataset suffers from the fact that the distance field
was created from an interface surface that is unstable. A small change
in the selection of this surface could lead to a profound difference in
the topology. However, by having relaxed notions of the exact loca-
tion of this interface, we can overcome the instability and produce a
result that is invariant under small changes in selection of the interface
surface.

We use several filters to direct our simplification process to pre-
serve relevant features in the data (relevance understood here as user-
specified features for a particular application). A filter specifies the
arcs of the MS complex that are to be removed from the list of candi-
dates for cancellation. Any filtering requirements can be met with the
following three conditions:

i Arcs that have their lower, upper, both, or neither end points in a
given range of function values.

ii Arcs that cross a given isovalue.
iii Arcs whose lengths lie within a given range.

These criteria, or combinations thereof, designate a wide range of
features.

We show an example where the distribution of critical point pairs
help distinguish between actual features and artifacts in Figure 3. In
this example, we created a distance field using a standard approach
as the signed distance from the shells of a set of atoms distributed
along a spiral and a sinusoidal curve. The atoms are placed at random
along these curves, and additional “noise” atoms are added through-
out the data. We compute the Morse-Smale complex for this distance
field. We wish to extract the curved skeleton from this distance field,
without knowing a priori the details about how the distance field was
constructed. Intuitively, we can guess that the features will be repre-
sented by 2-saddle - maximum pairs where the maximum has large



(a) (b) (c)

Fig. 3. The isosurface for isovalue zero of the initial distance field (a).
We compute the Morse-Smale complex of this field (b), and apply filter-
ing to extract the stable core structure (c).
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Fig. 4. The distribution of 2-saddle - maximum pairs (a). Each pair is
plotted as a point whose coordinates are the function values of the 2-
saddle and the maximum. We integrate along the x-axis (b) and y-axis
(c) to see the density distribution of 2-saddles and maxima.

positive value and the 2-saddle has large negative value. The distri-
bution of critical point pairs, illustrated in Figure 4, suggests certain
stable thresholds for “important” maxima and 2-saddles. In particular,
these pairs are those in the upper-left corner of the scatter plot. Flat
regions in the integral along each axis reveal that the stable threshold
for maxima is two, and the stable threshold for 2-saddles is -1, where
this curve first starts to flatten out. By cancelling all arcs that do not
entirely cross the range [-1,2], we remove the artifacts and noise. The
core structure is extracted as the 2-saddle - maximum arcs that remain
and are entirely contained in the isosurface for isovalue zero.

2.4 Fingers

Persistence-based simplification of the MS complex can result in con-
figurations that cannot be reduced. Such a situation arises when a cell
of the complex contains three pairs of critical pairs, none of whom can
be canceled because of an obstruction, as shown in Figure 5(a). Can-
cellation of any of the three critical pairs results in an invalid MS com-
plex as shown by Gyulassy et al. [14]. Canceling the saddle-extremum
pair leads to a strangulation of the cell whereas canceling the saddle-
saddle pair results in the creation of a pouch. The cell cannot be re-
moved by any sequence of cancellations. These configurations, called
fingers, are artifacts that result from our choice of order of cancella-
tions in flat regions of the function. In our construction, we introduce
flat regions throughout the function to create the evenly spaced artifi-
cial complex. Therefore, these fingers can accumulate in large num-
bers as shown in Figure 5(b). In fact, the maximum persistence within
such a finger may be much smaller than the persistence filter and yet
the small feature cannot be removed. While the structure of the com-
plex remains combinatorially sound, the fingers add to visual clutter,
and should be removed. This is especially important in analysis of
the porous solid, since fingers might erroneously indicate structural
components of the distance field.

(a) (b)
Fig. 5. Certain orders of cancellation result in finger-like configurations.
(a) A single finger contains three critical pairs none of which can be
legally canceled even if they have low persistence. (b) Fingers could
accumulate leading to visual artifacts.

(a) (b)
Fig. 6. The geometric location of an integral line in a flat region is arbi-
trary. Therefore we shortcut the path, and find the shortest path through
the flat region.

Fig. 7. Artifacts from the construction of the complex include flat regions
inside every voxel. Therefore, an integral line can take any valid path
from the point of entry in a voxel to the point of exit. We again remove
kinks in the integral line by shortcutting the path.

We use the sliding window algorithm for construction of the MS
complex presented in [15] with slight modifications. We prevent
the creation of fingers by reordering the cancellations in the pre-
processing stage of this algorithm. All saddle-extremum cancella-
tions are scheduled before the saddle-saddle cancellations to ensure
that none of the ε-persistent saddle-extremum pairs remain. While ob-
structions can still develop, they are resolved by future saddle-saddle
cancellations. Additionally, we perform all possible cancellations
within a single slice of the data before canceling critical pairs that span
multiple slices. In particular, this removes all minimum-1-saddle pairs
within the slice. Since 2-saddle-maximum pairs span multiple slices,
this reordering prevents the simultaneous existence of un-cancellable
minimum-1-saddle and 2-saddle-maximum pairs.

2.5 Arc smoothing
The procedure described in [14] for constructing the MS complex
from the artificial complex results in arcs that contain geometric arti-
facts: the sequence of line segments representing the arc may differ
significantly from the location of the corresponding integral line. This
discrepancy occurs because the artificial complex introduces several
small regions of constant value, “flat regions,” to the function. Inte-
gral lines are not uniquely defined in these flat regions, and therefore
the arcs we produce may wander before resuming the path of steepest
ascent, see Figure 6. Figure 7 shows how these flat regions can intro-
duce sharp spikes in the arcs. In fact, while the combinatorial structure
of the complex is correct, the geometry of the arcs may be off from the
integral lines by one voxel in any direction. For use in the analysis of
the distance field, we want the arcs to behave like simple curves that
can be represented as a sequence of line segments.

The spikes we introduce are the result of cancellations in flat re-
gions. Previous approaches [2] perturb the function to avoid flat re-
gions. However, the necessity to reorder cancellations to avoid cre-
ation of fingers in our approach prohibits such an approach. Instead,
we shift the arcs towards the integral line using shortcuts. The spikes
in the arcs have a unique property that they occur entirely within a sin-
gle hexahedral cell, being a unit cube (or voxel) in our case, around
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Fig. 8. Legal and illegal 3x3x3 neighborhood configurations: (a) 2x2
edge legal and illegal cases, showing only one of four rotations; (b) ver-
tex neighborhoods need only test for diagonal cases; (c) tubes should
not be created or destroyed.

the arc. These unit cubes have the property that they have unique
points where the arc enters pentry and where the arc exits pexit . We
consider the slope of any line with end points x0 and x1 in the cube
as ( f (x1)− f (x0))/‖x1 − x0‖ and therefore, given pentry and pexit ,
the maximum slope is in the direction that minimizes the distance.
Hence we use a shortest-path algorithm within unit cubes to shortcut
the spikes and yield a smoother arc.

3 CLEAN DISTANCE FIELD PROPAGATION ALGORITHM

The second method of constructing topologically clean fields uses a
variant on queue-based signed distance field construction for regular
volume grids, modified to allow only manifold and topologically clean
isocontour propagations. The original signed distance propagation al-
gorithm is from Laney et al. [18]. In the new approach, only distances
are kept in the construction state, not actual closest points. Another
change is that a fast priority queue is used, based on distance, in place
of a first-in-first-out queue.

The state of the distance propagation includes a 3D regular grid
of distances per cell, and a priority queue using fast bucket sort of
the potentially updating cells on the propagation front. The algorithm
works in two passes, one for the positive distances and a second sym-
metric pass for the negative distances. The algorithm takes as input a
conventional signed distance field that has already been generated for
reference.

For the positive clean distance propagation, all negative distance
entries from the conventional signed distance field are left as is, while
the positive values are initially replaced with infinity. All positive in-
finity cells are checked for legal update capability. If the cell could
be legally updated, the cell is put on the priority queue. One by one,
the smallest distance cell on the priority queue is dequeued and up-
dated (its distance is stored in the clean distance field), and all its 26
neighbor cells are tested for legal update capability. Any neighbor that
is either already on the update queue or could be legally updated is
queued with a new update distance as its priority. This processing pro-
ceeds until the priority queue is empty. It remains to describe the test
for legality of updates and the update distance values.

The legality of update, and the distance value upon update, are
determined by the following procedure for cell i. First, the maxi-
mum of all non-infinity values of the 26 neighbors, fmax, is deter-
mined. Next the minimum neighbor jmin with value fmin is deter-
mined. The smallest potentially legal update distance value is then
fup = max{ fmin +dist(i, jmin), fmax +ε}, where dist(i, jmin) is the dis-
tance from the center of cell i to the center of minimum neighbor cell
jmin, and where ε is an infinitesimal positive value (in practice, the
step to the next IEEE floating point value). This minimum potential
update value fup is then tested for legality.

Legality of propagation is based on a cell-face model of contours. In
other words, the field is thought of as piecewise constant with distinct
values per cell, with contours formed from sets of cell faces. The
legality test for an update uses a bit mask for the 3x3x3 neighborhood
around the potentially updating cell, where each of the 27 bits is set to
one if the corresponding cell is infinity, and zero otherwise. This bit
mask is then tested to ensure that manifold propagation of the contour
faces occurs, and that the contour topology is unchanged. This can be
thought of as incrementally adding cubes to the “in” set of a solid such
that the surface of the solid stays manifold and keeps the same number

of handles and components.
This incremental guarantee is obtained by ensuring that: all twelve

edges of the added cube remain manifold with zero or two faces in-
cident, see Figure 8(a); that all eight vertices do not have a diagonal
configuration see Figure 8(b); that a single box or void is not cre-
ated; that a homogeneous (all in or out) region is not created; and
that an axial tube is not created or destroyed, see Figure 8(c). Other
than these restrictions on legal updates, the distances propagate as in a
conventional distance field update, with forced strictly increasing val-
ues for cells relative to their neighbors. This implies that cells that
are delayed for inclusion due to legality constraints will have a higher
magnitude distance value that if they were introduced at the traditional
(non-clean) step in the queue processing.

The testing for legality can be implemented through 3x3x3 neigh-
borhood bit mask manipulations with small table lookups per update
cell edge (four bit lookup index), vertex (eight bit lookup index) and
tube end configuration (six bit lookup index). This is much faster to
evaluate than a large sequence of individual assertions, and requires
far less memory (and is thus far more cache friendly) than using a gi-
ant table with 27-bit lookup indices for the full 3x3x3 neighborhood
state.

4 RESULTS

We demonstrate the usefulness of our two procedures for the gener-
ation of clean distance fields by finding the filament structure for a
porous solid. Each method produces an output representing the curved
skeleton structure of the clean distance field, which is the core struc-
ture of the porous solid. We compare the two methods by defining
criteria to determine the similarity of the resulting core structures. The
porous solid dataset is a standard distance field derived as the signed
Euclidean distance from the shells of atoms in the simulation.

4.1 Core Structure of a Porous Solid
We compute the core structure of a porous solid using both methods.
First, we compute the Morse-Smale complex using the incremental al-
gorithm presented in [15], with the finger removing and arc smoothing
modifications. Then, similar to our previous example shown in Figure
3, we analyze the critical point pairs, and filter the arcs to extract the
core structure. The full complex shown in Figure 9, is used to plot
the distribution of 2-saddle - maximum pairs, shown in Figure 10.
The features we are interested in are the arcs that connect a low 2-
saddle to a high maximum; these critical point pairs are in the top left
of the distribution. Flat regions in the integral along each axis reveal
that the stable threshold for maxima is 1.5, and the stable threshold
for 2-saddles is −.8. By cancelling all arcs that do not entirely cross
the range [−0.8,1.5], we remove the artifacts and noise. The core
structure is extracted as the 2-saddle - maximum arcs that remain after
simplification and are entirely contained in the isosurface for isovalue
zero. For this particular application, we are interested in the connec-
tivity of the porous solid, therefore we omit arcs that are connected to
the structure at only one endpoint from the final core structure.

The second method creates a clean distance field starting with an
isosurface at a chosen threshold value, shown in Figure 11. We use
−0.8 as the stable threshold found through analysis of the critical point
pairs. Due to the propagation of the topology-preserving front used in
this method, all “dangling” arcs are retracted, leaving the same struc-
ture we found using the first method.

The results were generated using an off-the-shelf personal com-
puter, a 3.4GHz Pentium 4, with 2 Gb of memory. The porous solid
was represented as real-valued samples on a 230× 230× 375 regular
grid. The total time required for computation of the initial MS com-
plex was 6 hours 32 minutes and 45 seconds. Additional processing
to attain the graph structure took 32 seconds. The total time required
to create the clean distance field using the propagation method starting
with the same input dataset was 91 seconds. After the initial computa-
tion, exploration and further simplification can be done interactively.
For large datasets, computation of the full MS complex is not possible;
however, we can still perform analysis on a subset of the data to attain
the distribution of critical point pairs, assuming features are distributed
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Fig. 9. The initial computation of the MS complex for the full dataset (a)
is simplified revealing the graph structure (b) of the porous solid.
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Fig. 10. The distribution of the 2-Saddle-Maximum pairs (a). The color
scale shows the number of occurrences of 2-Saddle-Maximum pairs
where the 2-Saddle has function value along the x-axis, and the Maxi-
mum has function value along the y-axis. We integrate along the x-axis
(b) and along the y-axis (c) to find stable threshold values.

nearly uniformly in the dataset. The clean distance field method is an
efficient implementation that can be applied to large data, and benefits
from such an analysis.

4.2 Comparison
We present a qualitative comparison of the two results using a visual-
ization overlaying the two core structures in Figure 12. The “struts”
connecting the two overlaid graphs represents the connection to the
closest points of each with respect to the other.

We also present a set of criteria as a quantitative measure of differ-
ence between the structures. Specifically, we have used these criteria:

i Hausdorff distance - the maximum geometric distance between
points on one graph and their closest neighbor on the other. To
obtain a symmetric measure, the geometric distance is computed
in both directions and the larger value chosen.

ii Average distance between closest pairs on the two graphs.

iii Number of simple cycles in each graph, to estimate connectivity.

iv Total length of edges in each graph.

A number of differences exist in the results produced by each
method. Differences in the geometry result from the fact that the edges
from the MS complex are restricted to edges of the grid, while edges
from the clean distance method are smoothed in the direction of the
gradient. This factor, however, contributes only a small fraction of the
difference between the two methods. A number of cases arise where
the connectivity of the two graph structures is different, however, this

(a) (b)

Fig. 11. The initial isosurfaces (a) reveal noise. Computing the clean
distance field removes small isosruface components and reveals the
filament structure (b).

Fig. 12. Comparative visualization of the results obtained by the two
methods. The teal structure indicates points on the graph returned by
the method based on the MS complex, and the yellow structure indicate
points on the graph returned by the propagation method. The red lines
indicate the closest point from each point on the first graph to the second
graph, and the blue lines show the closest point from each point on the
second graph to the first graph.

is a result of properties of each algorithm, and not due to instability.
In particular, the largest difference between the two algorithms was
retraction of “dangling” arcs. A small loop at the end of such an arc
would prevent retraction of that arc. These small differences occur
due to the necessity of selecting a single original isosurface as the start
of the propagation method. Overall, these differences contribute less
than one percent of the length of the core structures.

Table 1 shows the results of comparing the two methods for the
porous structure dataset.

Metric MS-c method Prop method
Hausdorff 31.5 33.53
average distance 1.7 1.4
number of cycles 372 304
total length 22239 19002

Table 1. Comparison results for the two procedures.

4.3 Time-Dependent Impact Data
We have used our methods to explore a simulated dataset of a particle
impact on the porous material at several timesteps. By computing the
clean distance field, we can obtain the density of the porous solid as
the ratio of the number of sample points interior to the zero isosur-
face to the number of sample points outside. The clean distance field
ensures that all sample points identified in this way contribute to the
structure of the porous material. The structural analysis and compar-
ison between time steps allow us to obtain an important result: there
is significant densification of the foam below the crater wall. Such
analysis provides a simple, quantitative answer to the amount of den-
sification, as shown in Figure 14 (a,b). In this figure we show the
density profile at different times as a function of depth for slices of
(a) the whole sample, and (b) the center of the sample, including the
crater. It can be seen in (b) that the density increases by a factor of two
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Fig. 13. Top: A volume rendering of the impact of the ball entering the porous solid from the left at time step 500 (a), time step 12750 (b), time
step 25500 (c), and time step 51000 (d). Bottom: We compare the core structures of consecutive time steps. The yellow dots represent the core
structure of the initial time step, and the teal dots represent the core structure of the next time. The closest arcs between in the core structures at
the different time steps are connected via blue and red line segments. The length of these segments corresponds to the displacement of the arc.
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Fig. 14. We compute the filament density of the material as the ratio
of samples inside the interface surface to those outside the interface
surface at each time step. We compute this density profile for the entire
data (a), and a cylinder through the impact crater (b).

below the crater.
We also have computed the core structure using the MS complex

for each timestep. Using the distance measures from Section 4.1, we
can compare qualitatively how the structure of the material changes
between timesteps. Figure 13 is a visual depiction of the displacement
of filament segments at different times after impact. Note the large
displacements near the crater, and the nearly zero displacement well
below the crater.

In both figures it can be seen that density barely changes in the
bottom one-third of our sample. This is partly due to the fact that the
foam is extremely efficient at absorbing the impact shock wave. Key
statistics of the core structure for each time steps are summarized in
Table 2.

Metric t=500 t=12750 t=25500 t=51000
# Cycles 762 340 372 256
Total Length 34756 24316 23798 18912

Table 2. Statistics for each timestep.

The ratio of cycle counts before and after the impact supports this
observation, as approximately two-thirds of the cycles are destroyed.
The ratio of the total length of the filaments before and after the par-
ticle impact implies that volume of material displaced by crater is ap-
proximately one-half the volume of the rest of the material. Since this
ratio is fairly close to the ratio of the cycle counts, we can say that
the majority of the filaments that were broken happened to be in the
interior of the crater. The sum of the Hausdorff distances between the
timesteps is 98.6, giving the maximum distance that any element of the

material travelled during the impact. This number is surprisingly high,
corresponding to the entire depth of the crater; it indicates that the ma-
terial of the filaments first hit by the particle was displaced along the
trajectory of the particle. The average distance between closest pairs
in the graphs of the consecutive timesteps was less than 5.0, indicating
that the displacement did not propagate into the material, outside the
direct path of the particle.

Densification of the foam will vary as a function of impact velocity,
and a quantitative characterization of such a function might help to
narrow down such velocities when they are not known. In addition,
the fact that the foam is getting denser would change, for large particle
fluxes, the foam’s mechanical and thermal properties.

5 CONCLUSIONS

We have presented two methods for the construction of topologically
clean distance fields. We used these methods to extract, character-
ize, and visualize relevant filament structures in a porous material.
The analysis of critical point pairs of the MS-complex eliminates most
of the uncertainty and instability associated with traditional methods,
allowing the identification of a consistent and stable core structure
through filtering operations. The propagation method is an efficient
and scalable method that modifies the function itself to create a clean
distance field with the same topology. We showed that the our two
methods produce similar core structures for the porous solid. The abil-
ity to extract a stable and consistent core structure allowed us to make
comparisons across time steps for the particle impact data, and extract
meaningful results about the material properties.
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