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Fig. 1. The proposed visualization illustrated on several two-dimensional scalar fields. In the bottom row, each curve represents a
monotonic region of the 2D domain, a geometric summary for each crystal of the Morse-Smale complex of the function above.

Abstract—An important goal of scientific data analysis is to understand the behavior of a system or process based on a sample of
the system. In many instances it is possible to observe both input parameters and system outputs, and characterize the system as
a high-dimensional function. Such data sets arise, for instance, in large numerical simulations, as energy landscapes in optimization
problems, or in the analysis of image data relating to biological or medical parameters. This paper proposes an approach to analyze
and visualizing such data sets. The proposed method combines topological and geometric techniques to provide interactive visual-
izations of discretely sampled high-dimensional scalar fields. The method relies on a segmentation of the parameter space using an
approximate Morse-Smale complex on the cloud of point samples. For each crystal of the Morse-Smale complex, a regression of the
system parameters with respect to the output yields a curve in the parameter space. The result is a simplified geometric representa-
tion of the Morse-Smale complex in the high dimensional input domain. Finally, the geometric representation is embedded in 2D, using
dimension reduction, to provide a visualization platform. The geometric properties of the regression curves enable the visualization
of additional information about each crystal such as local and global shape, width, length, and sampling densities. The method is
illustrated on several synthetic examples of two dimensional functions. Two use cases, using data sets from the UCI machine learning
repository, demonstrate the utility of the proposed approach on real data. Finally, in collaboration with domain experts the proposed
method is applied to two scientific challenges. The analysis of parameters of climate simulations and their relationship to predicted
global energy flux and the concentrations of chemical species in a combustion simulation and their integration with temperature.

Index Terms—Morse theory, High-dimensional visualization, Morse-Smale complex.

1 INTRODUCTION

Visual representations of high-dimensional scalar fields are becoming
an increasingly important challenge in a variety of fields. To illus-
trate the problem, consider the manufacture of concrete. The recipe,
or ingredients, for concrete consists of various mixtures of a variety of
constituents, such as rock, cement, and water, as well as age. A quan-
titative measure of the success of such a particular recipe is compres-
sive strength. Different aspects, or parameters, of the concrete recipe
can interact to impact the compressive strength in complicated, non-
linear relationships. A typical regression analysis provides the math-
ematical relationship, but visualizing and understanding the resulting
high-dimensional structure is still quite difficult and does not directly
answer many of the relevant questions. In particular, a civil engineer
might like to know if there are multiple distinct recipes for strong con-
crete. Additionally, one may want to understand how the recipes for
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weak concrete differ from these optimal mixtures, and what particu-
lar deviations from ideal should be avoided. Furthermore, an engineer
might like to know how to make small modifications to a current recipe
in order to realize incremental improvements, and what the risk is that
these changes could make things worse. A similar set of problems
arises in numerical simulations, where a great variety of free param-
eters can interact to affect the results. Indeed, the parameters in a
simulation are the recipe for achieving certain quantitative outcomes,
and there exists a set of questions analogous to those in the concrete
example. Our proposition is that this kind of analysis demands new
visualization tools that can aggregate data and effectively reduce the
dimensionality while respecting the important structure introduced by
the output variable. These tools need to capture not only global in-
formation, such as the overall topology of these relationships, but also
local information, such as the geometry of these functions.

The relationship of concrete mixtures and compressive strength can
be represented as a high dimensional scalar function y = f (x), where
x ∈ Rd are the parameters (ingredients and recipe) and y ∈ R is the
output (compressive strength). Conventional multiple regression of f
assumes a set of samples yi = f (xi), and attempts to reconstruct f for
the entire domain. Of course, the number of samples must be larger
than the degrees of freedom in the model, and in high-dimensional
spaces model selection becomes a critical problem. The resulting sur-
rogate model of f may subsequently be used to predict the output for
new inputs and for analysis in lieu of f . The goal of this paper is sub-



tly, but significantly, different from typical multiple regression. We are
not aiming to interpolate or extrapolate f , but to analyze and visualize
its structure using the existing samples to provide insight into the rela-
tionship between the parameters and the output. In particular, our goal
is to understand: i) the extreme output values (how many there are
and their location); ii) their connection in parameter space (how can
one continuously modify the inputs to get from some local minimum
to some local maximum); and iii) the inverse relationships indicating
which combinations of inputs are responsible for which output. More
generally, we are interested in the topology of f , which describes the
extreme values of the output, as well as the geometry of the regions
connecting them. Due to the large number of parameters, a simul-
taneous visualization of all of the data is impossible. Therefore, we
propose to aggregate the data into topologically-based summaries of
distinct regions or regimes in the parameter space.

Rather than modeling f directly, we propose to model some approx-
imate of the inverse relationship g : R "→ Rd , using multivariate ker-
nel regression. Here, g describes the conditional expectation E[X |y],
and each x̂ = g(y) is the representative of the parameters that achieve
a particular output y. This reverses the relationship of independent
and dependent variables compared to multiple regression analysis of
f . However, if f is not monotonic and thus not invertible, the data
aggregation implied by g can lead to a loss of important information.
For example, if different maxima are averaged their combined loca-
tion will not resemble the actual locations, see Fig. 2(b). Instead, we

(a) (b) (c)

Fig. 2. Sum of four Gaussian kernels of various shapes on R2 (a) repre-
sent by a locally linear regression curve (b) and the proposed approach
that computes regression curves of piecewise monotonic regions (c).
Note that, the independent variable of the regression corresponds to
the vertical axis.

propose to decompose f ’s domain into piecewise monotonic cells (or
crystals) using an approximate Morse-Smale complex, see Fig. 2(c).
Furthermore, filtering the data, based on topological properties, allows
to analyze g at different scales, making the framework highly flexible
and robust against noise.

The framework described in this paper combines topological and
geometric information to generate simplified lower dimensional rep-
resentations that preserve important information about the high-
dimensional scalar fields. This approach leads to a set of tools for in-
teractive exploration of the input domain as well as statistical analysis.
For each crystal we construct a single regression curve connecting the
minimum to the maximum which results in a sparse yet highly infor-
mative representation of the input domain, see Fig. 3. The curves are

(a) (b) (c)

Fig. 3. Schematic illustration of the proposed method. The scalar func-
tion (a) is decomposed into piecewise monotonic regions (b) and each
region is approximated by a regression curve (c).

embedded into two dimensions for visualization, using conventional

dimension reduction techniques. The third dimension in the visualiza-
tion is used to to represent the independent variable of g, which in this
case is the output of f . Thus, the visualization can be understood as an
approximation to the d-dimensional surface described by f . The visu-
alization describes not only the topology, but also provides additional
information about each cell’s geometry, including local information
such as tangents and curvature, as well as global information such as
size and sampling density, see Fig. 4.

! !

!"#$"%%&'()*+$,"
*'-'$".)/0)1+(*2&'()

,3-+"

453.&(#)&(.&*32&(#)
%367-&(#)."(%&20

8'*32&'()%-&."$

!"#$"%%&'(),3-+"9)%23(.3$.).",&32&'()
3(.)."(%&20)32)%-&."$)-'*32&'(

423(.3$.).",&32&'()
'1)$"#$"%%&'()*+$,"

Fig. 4. Visualization of the approximate Morse-Smale complex. Each
curve represents a segmented region of the input. Additional geomet-
ric and statistical properties of the regression curves provide additional
insight into the structure of the segmented regions.

The main contributions in this paper are:

1. A new inverse regression scheme based on the Morse-Smale
complex for functions defined on point clouds;

2. A sparse representation of the high dimensional Morse-Smale
complex based on the inverse regression scheme;

3. A visualization approach of the sparse representation using a two
layered dimension reduction approach;

4. A linked view interface allowing the user to interactively explore
the geometry and topology of a high dimensional function at
multiple scales; and

5. Detailed studies on the effects of parameter choices influencing
the computation and the expressive power of the proposed ap-
proach.

2 BACKGROUND AND RELATED WORK

Visualization in High Dimensions. By far the most common ap-
proach to explore high dimensional spaces is to use projections onto
one, two, or three dimensional subspaces and showing scatter plots,
smooth approximations, or labels corresponding to the projected posi-
tions of the data within this subspace. Common projection approaches,
based on statistical measures of the data, are principal component
analysis [36] and projection pursuit [24]. In a slightly different di-
rection researchers have proposed to look at curves that describe se-
quences of projections of the data onto different directions as in An-
drews plots [1], which are closely related to parallel coordinates [34].
The grand tour approach [2] extends this strategy to a sequence of pro-
jections onto multiple planes. More recently, the projection approach
to visualize high dimensional data has been used in conjunction with
nonlinear dimensionality reduction methods [58, 39]. An interesting
variation with embeddings onto the hyperbolic plane is proposed by
Walter et al. [54]. In the machine learning community embedding is a
common strategy for quantifying the effectiveness of manifold learn-
ing approaches [5, 33, 47, 50].
Dimension Reduction and Regression. Dimension reduction and
manifold learning approaches [5, 33, 47, 50] are appropriate for scat-
tered data that has an underlying low dimensional structure which is
not explicit in the formulation of the problem. When analyzing high



dimensional scalar functions, however, one is less interested in the ge-
ometry of the domain but in the geometry induced by the dependent
variable. In the context of scalar functions, dimension reduction ap-
proaches operate on the domain of the function. Often the set of sam-
ples in the domain is not reducible, i.e. the function is truly defined
on the complete data domain and not only on a lower dimensional
structure embedded in the domain. Thus, classical dimension reduc-
tion approaches are not applicable. The proposed method combines a
topological decomposition with dimension reduction to arrive at a low
dimensional representation that succinctly describes the scalar field.

Another related area of research is regression analysis focusing on
the parametrization and/or segmentation of the independent variables.
Multivariate adaptive regression splines (MARS) [25] or kernel regres-
sion [43, 55] can be formulated as averaging local models in the pa-
rameter domain—the independent variables. In regression and classifi-
cation trees [8, 13] the independent variables are explicitly partitioned
into regions and the regression estimate is calculated by a smooth aver-
aging scheme. However, understanding the parameters from the point
of view of the output variable is another matter. The inverse approach
of partitioning the independent variables based on the topology of the
function f is a unique contribution of this paper.

Topological Analysis. For lower dimensional scalar data, topology-
based techniques have been proposed in a wide variety of applications.
Topological structures such as the Reeb graph [46, 45, 7, 35, 11] or the
Morse-Smale complex [23, 9, 29, 30] provide an abstract representa-
tion of scalar fields well suited for analysis. They can be used to define
a wide variety of features in various applications, ranging from medi-
cal [12], to physics [38, 10] and material science [28].

Algorithms have been proposed for computing topological struc-
tures [45, 11, 30] on n-dimensional manifolds. Furthermore, there
exist some extensions to point cloud data. Harvey and Wang [31] use
a k-nearest neighbor graph to compute a contour tree which is subse-
quently displayed as an improved version of a topological landscape
[56] . In a related approach Oesterling et al. [44] use the landscape of
merge trees to illustrate point cloud densities.

The Morse-Smale complex is defined as the intersection of the
Morse complex of f and − f . Computing a Morse complex is a well
known concept in several areas, albeit under different names. In com-
putational geometry the Morse complex is often described in terms of
a filtration of the sub-levelsets of f . Chazal et al. [14, 15] use nested
Rips complexes to compute the Morse complex of a function f given
at sample points of a (low-dimensional) manifold embedded into high
dimensional space. To remove noise and artifacts they construct the
persistence diagram of f and prove that it is stable under small pertur-
bations. For the final segmentation they use the algorithm of Zhu et
al. [60] which is, apart from the choice of steepest edge and simplifi-
cation procedure, very similar to the one used in Section 3.

In image processing the Morse complex is known as watershed seg-
mentation [22, 6, 40] and has been described for n-dimensional grids
as well as for abstract graphs [53]. Finally, in the context of pattern
recognition and machine learning, the Morse complex can be thought
of as a variant of mean shift clustering [16, 26, 19] in which the ker-
nel density estimation is replaced with f . Recent graph based variants
such as medoid shift [49] and quick shift [52] are very similar to the
algorithms described in Zhu et al. [60] and Chazal et al. [14] except
for the choice of neighborhood and simplification metric. In general,
any gradient ascent style clustering [27] could be used to construct a
Morse complex like segmentation.

Morse Theory. The techniques presented in this paper are based on
Morse theory [42, 41] and in particular on the notion of Morse-Smale
(MS) complexes [23]. We briefly outline the basic theory and discuss
a few of the more common approximations. We refer the reader to [23]
for a more formal discussion.

Let M be a smooth manifold without boundary and f : M → R a
smooth function with gradient ∇ f . A point x ∈M is called critical if
∇ f (x) = 0 or regular otherwise. At any regular point x the gradient
(vector) is well-defined and integrating it in both directions traces out
an integral line γ , γ(s) = ∇ f (γ(s)) which starts at a minimum and

ends at a maximum. The ascending/descending manifold of a critical
point c is defined as all points whose integral lines start/end at c. The
descending manifolds form a complex called the Morse complex and
the ascending manifolds define the Morse complex of − f . The set of
intersections of ascending and descending manifolds creates the MS-
complex of f .

The complex consists of a set of crystals formed by the union of
integral lines that start and stop at the same extremal points. These
crystals yield a decomposition into monotonic, non-overlapping re-
gions Di ⊂ M of the domain. This observation is important when
representing the function with one regression curve per crystal. The
monotonicity ensures that the level sets of f within each Di are topo-
logical disks of the appropriate dimension. As a result, computing
x̂ = g(y) = E[X |y] is guaranteed to not average topologically distinct
structures, such as multiple extrema, which could distort the results.

3 METHODOLOGY

In this paper we consider functions represented as a finite set of points
X in a high dimensional space Rd and a set of corresponding scalar
values Y , i.e. a discrete set of samples of a function f : Rd → R with
yk = f (xk).

The proposed approach consists of three steps to arrive at a 2D rep-
resentation for visualization of the high dimensional scalar function:

1. Morse-Smale Approximation: Compute segmentation Xi and
Yi using the Morse-Smale approximation of f based on X and Y .

2. Geometric Summaries: Construct regression curves ri as a ge-
ometric summary of each segmentation Xi and Yi.

3. Dimension Reduction: Embed regression curves in 2D using a
two-step dimension reduction approach.

The first step captures the topological properties of the data. The sec-
ond step provides geometric information about the data while preserv-
ing the topological structure. Finally, the third step provides a repre-
sentation suitable for visual exploration. In the following we describe
each step in detail and illustrate how the proposed technology is used
to gain insight into the structure of high dimensional scalar fields.

Morse-Smale Approximation. To compute the ascending and de-
scending manifolds we use a variant of the quick shift algorithm [52].
At each vertex, we compute the k-nearest neighbor graph of X and
among these choose the steepest (a/descending) edge to represent the
gradient. All vertices that have no a- or descending gradient assigned
are local extrema and we label all vertices of X according to the
local extrema its a-/descending gradient will terminate. The result-
ing complexes contain a region for each local extrema that represent
the a-/descending manifolds. Note that our complexes can be over-
segmented and may need to merge regions as compared to the initial
under-segmentation of [52]. Subsequently, we collect all vertices with
the same label pair into crystals Xi and add the extrema to all crystals
that share the corresponding label. This set of crystals is then used as
an approximation to the MS-complex of f .

Geometric Summaries. For each crystal of the Morse-Smale com-
plex, a geometric summary is constructed by an inverse regression.
This yields a 1D curve in the d-dimensional domain of f .

Formally, the input domain for each crystal Ci with samples
(Xi,Yi) of the MS-complex is summarized by a parametric curve
ri : [minx∈Ci f (x),maxx∈Ci f (x)] "→ Rd . Modeling the curve by the
conditional expectation ri(y) = E[X ∈Ci|Y = y] yields a representation
of the crystal Ci as the average of the level sets {x : f (x) = y,x ∈Ci}
within the partition. The conditional expectation E[X ∈ Ci|Y ] is esti-
mated with locally linear regression [17] and can be written as

ri(y) = (ȲiW (y)Ȳ T
i )−1ȲW (y)XT

i .u1. (1)
Let ni = |Xi|, the number of points in crystal i. Then W (y) is a
ni× ni diagonal matrix with Wk,k = K(y,yk) and K a kernel function.
Ȳi = (1,Yi) a matrix with the first row all ones and the second row the
function values of crystal i, and u1 = (1,0)T . Thus, ri(y) is estimated



by a weighted linear fit to Xi, a first order kernel regression, with con-
tribution of point xk decreasing with increasing distance of ‖yk− y‖2.

In this paper, we use a Gaussian kernel K(y,yi) = 1√
2πσ e−

|y−yi |2

2σ2 with
the kernel bandwidth σ a free parameter — since the bandwidth choice
is over the range, i.e. a scalar value, it can be readily set according to
the given data.

The geometric properties of the curve provide additional informa-
tion about the Morse-Smale crystal that we visualize in the low dimen-
sional embedding. The gradient, or tangent vector, of the regression
curve is directly available from the linear approximation in the regres-
sion computation,

d
dy

ri(y) = (ȲiW (y)Ȳ T
i )−1ȲW (y)XT

i u2, (2)

and gives a measure of the local sensitivity of the input coordinates.
The average distance of the data to the curve as a function of the pa-
rameter y gives important information about the shape of the crystal.
The coordinate-wise standard deviation is calculated by

δi(y) =
√

(
ni

∑
j

K(y,y j)ρi(x j)
∑ni

k K(y,y j)
), (3)

with ρi(x j) the vector of squared projection residuals of x j onto r j
computed by ρi(x j)m = (ri(y j)− x j)2

m, here m = 1 . . .d indicates the
component of the vector. The average, direction independent, standard
deviation is computed by

si(y) =
√

(
ni

∑
j

K(y,y j)di(x j)
∑ni

k K(y,y j)
), (4)

with di(x j)m = ‖ri(y j)− x j‖2. The sampling density along the curve

pi(y) =
1
|X |

ni

∑
j

K(y,y j) , (5)

provides information about the number of points used in the compu-
tation of the regression curve point at y and gives an indication, in
combination with the standard deviation, of how densely sampled the
crystal in that region is.

To ensure consistency of the endpoints of regression curves that
share a maximum or minimum, we add the points that share crystals
for computing the regression curve. For each neighboring crystal Xn
we include its points xk in the kernel estimation, but modify the cor-
responding scalar values yk ∈ Yn by yk = 2max(Yi)− yk for maxima
and by yk = 2min(Yi)− yk for minima. This ensures a more accurate
estimation of extremal point locations (i.e. more data) and a smooth
transition into curves associated with adjacent crystals, while guaran-
teeing that end points of distinct, adjacent curves coincide at extremal
points. At the same time this approach does not significantly distort
the regression curve with points from other crystals.

We represent the curves as polylines with a dense sampling. Thus,
an equidistant sampling S = {s1, . . . ,s#samples} with s j = minYi + jh,
with h = max(Yi)−min(Yi)

#samples−1 of the range of Yi yields a piecewise linear
approximation L = {l1, . . . , l#samples} with l j = ri(s j) to the high di-
mensional regression curve. This linear approximation is in the next
step embedded into 2D for visualization.
Dimension Reduction. The set of regression curves can be repre-
sented by a graph embedded in Rd with each edge corresponding to
a curve and vertices corresponding to extremal points. For visualiza-
tion, we embed this graph into the plane preserving the spatial relation
among extrema and the geometry of the partitions that connect them as
best as possible. It is important to point out that the goal of this dimen-
sion reduction is to provide an informative illustration of f rather than
manifold learning of X . We compute the projection into the plane us-
ing a three step approach: first, vertices are embedded; second edges
are embedded individually; and third, the resulting two-dimensional
curves are attached to the projected vertices through affine transfor-
mations.

The extrema are embedded into two dimension using the principal
components of the corresponding point set. Specifically, the extremal
points E = [e1, . . . ,ek] are projected onto their first two principal com-
ponents Ce = [c1,c2] with the projections Pe = CT

e E. For the second
step, each linearly approximated regression curve Li is separately pro-
jected by PLi = CT

Li
Li, with CLi the first two principal components of

Li. In the third step, the projected curve PLi is connected to its cor-
responding minimum and maximum with an affine transformation. In
this way the directions of maximal variance for each curve are retained
and capture how much the curve deviates from a straight line connect-
ing the minimum and maximum.

Alternatively, one could consider a direct embedding of the high-
dimensional graph obtained from the Morse-Smale complex. How-
ever, this graph is very sparse (few edges) and this can lead to distor-
tions that do not reflect the relative locations of the extremal points.
For a graph based embedding approach, the distortions are less pre-
dictable. Depending on the structure of the graph, extrema that have
no direct edge connecting them can get pushed far apart. A PCA based
dimension reduction is easier to interpret, since the distortion induced
can only move points closer to one another and not further apart. In
any case, the structure of the graph does not depend on the embedding
method. However, the user needs to be aware of the specific distor-
tions, depending on the approach used, that are induced on extrema
locations and the regression curves connecting them.

If the support of the domain is suspected to form a lower dimen-
sional subspace one should consider reducing the dimensionality of
the data set first. If the reduced dimension is small enough, simpler
approaches for visualization of the scalar function can be pursued.
Otherwise, the proposed approach can be applied to the dimension re-
duced data. Optionally, a more sophisticated graph embedding could
be considered, for example, a manifold learning approach that jointly
embeds the sampled regression curves Si and the original data X to
avoid the pitfalls of sparse graphs. However, the focus of the pre-
sented methodology is on visualizing scalar functions defined on a
high-dimensional domain. A discussion of the many possibilities and
challenges involved with manifold structured domains is beyond the
scope of this paper.

3.1 Level of Detail
As shown in [14], the complexes of ascending and descending mani-
folds can be simplified by persistence, which, in this case, is directly
related to the L∞-norm. Furthermore, it has be shown that features
with large persistence are stable under small perturbations and thus
robust against noise and/or sampling variations. We extent the con-
cepts of [14] by performing two simultaneous simplifications on the
two complexes which amounts to simplifying both maxima (in the de-
scending complex) and minima (in the ascending complex). The sim-
plification merges neighboring extrema and we adapt the MS complex
accordingly.

The crystals of the simplified MS-complexes will not be monotonic
with respect to the original function, but they will be monotonic on
filtered versions of f , which if necessary, can be constructed within an
L∞ error no larger than the half of the persistence of the last cancella-
tion [23, 9]. At the coarsest level, only a single maximum and mini-
mum remain and the method is equivalent to a multivariate regression
analysis. At finer levels, more detailed information about the topology
is represented. The standard deviation of the regression curve repre-
senting the crystal holds information about the crystal. For example,
if during simplification two far apart extrema are merged the standard
deviation will increase accordingly. The sampling density provides
additional information about the reliability of a crystal. A low sam-
pling density indicates that the crystal is potentially spurious due to an
under-sampling of the corresponding region in the domain.

To understand how the MS complex changes with increasing sim-
plification we use a modified version of a persistence diagram [18].
Instead of showing the traditional bar codes indicating the lifetime of
a feature, we use a persistence graph that shows the number of fea-
tures as a function of persistence scaled by the global function range,
see Fig. 6. While the traditional diagram corresponds to a single filtra-



Fig. 5. The 2D Gaussian example at different levels of detail of the Morse-Smale approximation.

tion, we combine the information from the ascending and descending
manifold simplification by showing the number of extrema (both max-
ima and minima) as a function of persistence. Therefore, the graph
indicates which extremal points are due to noise and how many can
be accurately represented with the amount of data available: Extremal
points with a low persistence are most likely due to noise and/or under
sampling while plateaus represent a stable number of extremal points
that need a large amount of change to be simplified.
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Fig. 6. The persistence graph shows the number of extremal points as
a function of their persistence. The persistence graph provides informa-
tion about the level of detail of the visualization and an indication of the
number of reliable extremal points.

Fig. 5 shows a sequence of increasing persistence levels on the 2D
Gaussian example. The topological changes can result in very differ-
ent geometries, and to avoid disorienting transitions between embed-
dings, we anchor the embedding using the single crystal arising from
to the lowest level of detail (highest persistence). Each subsequent
level of detail is translated such that the maximum of the anchor is
matched with the corresponding maximum in the current embedding
and then rotated and scaled such that the shared extremal points of the
current level of detail with the previous level match as best possible
(minimum L2 norm).

3.2 Discussion of Morse-Smale Complex Approximation
While the described method provides a powerful set of tools to analyze
high dimensional functions, it is important to realize their limitations.
In the lower dimensional cases, a significant effort has been made to
guarantee that the resulting MS complex is structurally correct, mean-
ing there exists some smooth function f̄ with the given MS complex.
This notion of consistency does not generalize when intersecting inde-
pendently computed stable and unstable manifolds. Furthermore, by
representing crystals implicitly as intersections, there exists no sense
of saddles or boundaries between crystals. While this makes the com-
putation tractable, we can no longer distinguish two crystals with the
same extrema pair. Instead, such pairs are combined into a single crys-
tal and represented by a single regression curve. Since such crystals
accumulate points from spatially distinct locations one would expect
their regression to exhibit large standard deviations (large widths).

Finally, the approximate MS-complexes are dependent on the size
of the neighborhood, the number of samples with respect to dimen-
sionality and number and size of the features present. To analyze
how accurately the MS-complex recovers features, we ran various ex-
periments on synthetic examples with two, three, and four maxima,
equidistantly distributed on the diagonal of hypercubes with dimen-
sions two to six. For each combination, we computed 50 random sets
of 64,128, . . . ,4096 samples and 5, 10, 20, and 50 nearest neighbors.

We then computed the number of maxima present in the MS-complex
versus persistence for each combination and averaged the resulting
curves over the 50 instantiations. These persistence curves are a good
measure on how well the approximate MS-complex is capable to de-
tect features—for a good approximation, a significant plateau is visible
for the correct number of peaks.

The analysis is based on the function f defined by a diagonal sine
curve of amplitude 0.5 with frequency determined by the number of
maxima and multiplied with a Gaussian kernel orthogonal to the diag-
onal (Fig. 7). Thus, f varies between -0.5 and 0.5 and is symmetric
around 0. We define the feature size as the percentage of the domain
with f (x) ≥ 0.1 divided by the number of features present. Table 1
shows the feature sizes for the different number of maxima as well as
the lowest number of samples among our experiments that still showed
a noticeable plateau, see Fig. 7.

Table 1. Feature volume and number of necessary samples to distin-
guish all features for the synthetic test function at various dimensions
and numbers of features.

Feature Volume in % | Necessary # of samples
2 Maxima 3 Maxima 4 Maxima

2D 14.9 32 8.9 64 6.2 128
3D 8.5 64 4.7 256 3.2 512
4D 4.5 128 2.3 256 1.6 1024
5D 2.3 128 1.1 512 0.8 2048
6D 1.2 256 0.5 1024 0.4 4096

Contrary to what one might expect our experiments suggest that the
ability of the MS-complex to correctly detect features shows virtually
no dependence on the dimension of the domain—as long as the vol-
ume or spatial extent of the features grows proportionally to the space.
Instead, the necessary number of samples is primarily defined by the
relative volume of the features present and to a lesser extent by how
many features exist overall. In the case of a uniform sampling of the
domain, the probability of a sample falling into a feature of p per-
cent of the domain volume is p. Given n samples, the probability of a
sample falling into that feature is (1− (1− p)n). This yields estimates
about the size of features that can be expected to be detected for a given
number of samples. A more sophisticated analysis would consider the
number of samples required for sampling a given partition, as induced
by the Morse-Smale complex, of the domain. The coupon collector
problem [4] yields the expected number of samples for k equal sized
partitions and is approximately k log(k)+0.6∗ k. However, this alone
does not guarantee that the Morse-Smale complex computation will
succeed, but provides a lower bound.

The ideal number of neighbors, however, depends directly on the
dimension. Higher dimensions need a larger set of neighbors to iden-
tify features, see Fig. 8. The more neighbors are used, the more stable
the segmentation becomes as the neighborhood acts as a low-pass fil-
ter. However, once the number of neighbors becomes to large relative
to the overall number of samples, features are lost due to excessive
smoothing. For a regular grid of dimension n there are 3n− 1 neigh-
bors within a distance of

√
n. Therefore, in a simplicial mesh one

expects the number of neighbors to rise exponentially with respect
to n. Fortunately, our experiments suggest that the necessary num-
bers of neighbors behaves closer to linear as a function of dimension.
One possible explanation is that the numbers of necessary neighbors
is only related to the number of closest neighbors which in a regular
grid would be 2n.



     



























     






























     
































Fig. 7. Average persistence graphs showing the number of maxima vs. persistence for the sensitivity study for different number of features and
different dimensions. Each curves shows the mean and standard error of 50 random instantiations. Among our experiments we manually picked
the curve with lowest number of samples that showed a distinct plateau at the correct count and thus could differentiate all (positive) features.
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Fig. 8. Persistence curves for the three maxima test function in two
and six dimensions with 128 and 2048 samples respectively for different
neighborhood sizes. A larger neighborhood stabilizes the curves but in
the extreme can smooth away features.

In many cases the intrinsic dimension of the data does not corre-
spond to the dimension of the observations. For example, in physi-
cal simulations the observed data points are constrained by the physi-
cal model and thus the data has an intrinsic dimension corresponding
to the degrees of freedom of the physical model. In machine learn-
ing, manifold estimation approaches are built based on this observa-
tion. The techniques employed are often based on building a nearest-
neighbor graph [50, 47, 5] that approximates the manifold structure in
the data. In cases with manifold structured data, i.e. a scalar func-
tion defined on a lower dimensional manifold in the data space, the
approximate MS-complex implicitly takes the manifold structure into
account. However, as discussed in Section 3, it might be beneficial for
such data sets to use a dimension reduction approach as a preprocess-
ing step.

4 VISUALIZATION

The visualization consists of two parts, the MS-complex window
(MSW) and an application specific domain inspection window (DIW)
relaying additional information about the input domain.

The MSW is primarily used to gain an overview over the topolog-
ical and geometric structure of the scalar field and to drive interactive
exploration of the input domain. Fig. 4 shows the components of the
window; each tube corresponds to a Morse-Smale crystal. The colored
tube is the embedding of the regression curve with color correspond-
ing to the predictor value (of the scalar function). The geometry of
the curve is an approximation to the actual geometry in the high di-
mensional input domain. The width of the outer transparent tube cor-
responds to the standard deviation of the regression curve (proxy for
width of the crystal) and can be turned on and off. Information about
the sampling density is visualized with coloring of the silhouette of the
transparent tube, dark color indicates high density and light color low
density areas. On the bottom right the persistence graph is shown and
the user can select the visualization of a particular level of detail, as de-
scribed in Section 3.1. For complicated topologies, the user can select
a particular crystal of interest and the rest of the MS-complex is faded
out around the crystal of interest, as illustrated in Fig. 9. The user can
inspect a crystal in detail by moving the slider (ring) along the tube,
more detailed geometric information is then interactively displayed in

the DIW.

Fig. 9. Dealing with visual clutter by focusing on Morse-Smale crystals
of interest. Here four selected tubes are rendered solid, the remaining
tubes fade out with increasing distance from the selected tubes to keep
a sense of the global layout.

Fig. 10 shows two domain inspection modes that present informa-
tion about the local geometry of the selected location such as mean,
standard deviation, and gradient of the regression curve. In its most
general form, the DIW presents this information in a box plot type
visualization for each input coordinate at the selected slider location.
Alternatively, the regression curve of a crystal can be coordinate-wise
graphed as a function of the output value. This provides a more global
representation over the geometry of the crystal. For input domains
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Fig. 10. Domain inspection windows, (left) coordinate wise graphs of
the regression curves and (right) local information at slider location.

with additional structure, this information can be visualized on the
specific form of the input domain, for example images for grids as
illustrated in Fig. 14 or heat maps for gene expressions.



5 DEMONSTRATION OF THE METHODOLOGY

To demonstrate our approach we tested the proposed visualization on
datasets for which the main trends are known. This process is valuable
to validate the approach as well as to develop compelling examples
that illustrate its effectiveness in practice. The two datasets 1 that we
use for this purpose are: (i) analysis of manufacturing parameters of
concrete production and the quality of the product and (ii) on demo-
graphic information of US counties in relation to crime rate.

5.1 UCI Concrete Compressive Strength
The concrete compressive strength data set examines the effect of dif-
ferent cement mixtures on the compressive strength of the resulting
concrete. The dataset consists of 1030 samples of different concrete
cores tested for compressive strength. The input variables are cement,
blast furnace slag, fly ash, water, superplasticizer, coarse aggregate,
fine aggregate, and age. The output is the compressive strength in
MPa. Yeh [59] describes the dataset in detail and performs an analysis
with a linear regression model and neural networks. The regression
model fc(age) = a

[ water
cement

]bc[ln(age)+d] with a,b,c and d regression
coefficients, is tailored to the effects of the water/cement ratio and age
and does not take into account any other variables. Both the regression
model and the neural network are used as a predictive model and do
not lend themselves readily to insight into the structure of the relation
between mixtures and concrete strength. Fig. 11 shows a typical result
using a regression analysis that confirms that a low water/cement ratio
results in a stronger concrete. Fig. 12 shows the proposed approach
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Fig. 11. Concrete compressive strength modeled with a regression
model on age and water/cement ratio.

at the coarsest level of detail (highest persistence) with a single maxi-
mum and minimum. The water/cement ratio relationship observed in
the conventional regress is reflected in the curves for water and ce-
ment with increasing compressive strength. Additionally, an inverse
relationship between fly ash and compressive strength is readily visi-
ble. At a finer level of detail, multiple interesting interactions occur,
as shown in Fig. 13 on three selected crystals. One can build sev-
eral hypotheses for testing with specific regression models. First, it is
immediately visible that relatively different mixtures can lead to sim-
ilar strength concrete mixtures. The minima differ in their settings
of fly ash, blast furnace and coarse/fine aggregation ratio — this sug-
gests that fly ash and blast furnace can lead to weak mixtures if the
coarse/fine aggregation ratio and cement amount is not properly ad-
justed. The relationship between coarse and fine aggregates is visible
in (c), but this relationship also depends on the amounts of fly ash and
blast furnace. While (b) and (c) show that a relatively large amount of
coarse aggregates with little blast furnace results in a strong mixture,
in (a) the inverse is also visible. A similar inverse relationship is indi-
cated by cement and fly ash—increasing the amount in fly ash requires
the reduction of the cement amount to obtain strong concrete.

5.2 Brain Magnetic Resonance Images
This example illustrates how the proposed method can be adapted to
an application with more structured input domains. This is a data set of

1From the UCI machine learning repository http://archive.ics.uci.edu/ml

(a) (b)

Fig. 12. (a) Visualization of UCI concrete compressive strength data
set at coarsest level of detail. The domain inspection window (b) and
the corresponding composition as a function of strength (a). Note the
inverse relationship between water and cement as well as increasing
strength with age. Additionally, we can see that fly ash tends to zero for
strong mixtures.

416 brain volumes from the OASIS brain database 2 with mini men-
tal state examination scores (MMSE), the scalar output. Each brain
represents a data point in Rd with d the number of voxels in the vol-
ume, which is 176×208×176. Since only 416 data points are avail-
able, the computations are performed in the 415 dimensional subspace
spanned by the data. The MMSE score is a scalar ranging from 0 to
30 measuring cognitive abilities with a score of above 25 being nor-
mal and scores below indicating mild (21-24), moderately (10-20) and
severe (below 9) cognitive impairment. Fig. 14 shows the location
on the regression curve as an image corresponding in the input do-
main, standard deviation is indicated with increasing red shade on the
pixels. Above the gradient is shown (green decreasing intensity and
red increasing intensity). The coarsest level of detail shows that de-
creasing MMSE scores correlate with increasing ventricle size. It is
well known that the size of the ventricle increases with age or dis-
ease, such Alzheimer’s, which in turn affects the MMSE scores sig-
nificantly [21, 3]. At finer levels, multiple minima appear, related to
atrophies in the left versus right ventricle horn. However, these min-
ima are potentially artificial due the small number of subjects with low
MMSE scores, as indicated by the sampling density in the visualiza-
tion (light silhouette).

6 APPLICATIONS

This section presents results from explorations of scientific data in col-
laboration with domain scientists. The first case is focused on the anal-
ysis of the relationship between the composition of chemical species
in a turbulent combustion process and its efficiency in terms of fuel
consumption and pollutants generated. The data is from a time de-
pendent simulation of jet flames. The second application involves the
analysis of the parameter space of a climate modeling simulation and
the ability to estimate the uncertainty associated with a given predic-
tion. In both cases the scientists have found that the use of our tools
revealed new insights that existing techniques did not provide.

6.1 Combustion Simulation
This data consists of 700K samples of chemical composition and tem-
perature extracted pointwise (samples in space and time) from tem-
poral jet simulations of turbulent CO/H2-air flames, as described by
Hawkes et. al [32], with detailed chemistry, thermodynamics, and
transport. The data includes extinction and reignition phenomena.
Several chemical components form and evolve during the combustion
reaction and in turn effect the amount of heat released. In this anal-
ysis we explore the temperature in relation to the chemical composi-
tion. The chemical species involved are O2 (Oxygen gas / Oxidizer),

2http:www.oasisbrains.org
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Fig. 13. Finer level of detail of the compressive strength data set. Three
crystals are selected for closer examination.

O (Oxygen), OH (Hydroxide), H2O (Water), H (Hydrogen), HO2, CO
(Carbon monoxide), CO2 (Carbon dioxide) and HCO—a 10 dimen-
sional scalar function with amount of heat released as output.

The data is incommensurate among the different chemical species.
Thus, we normalized the data such that each coordinate has a standard
deviation of one. This is important for the nearest-neighbor computa-
tion and places equal weight on the different coordinates for distance
computations. To reduce computation time, we randomly, uniformly
without replacement, sampled 10K points of the 700K data set. The
subsample shows a nearly identical mean, standard deviation, and his-
togram as the complete data set.

Fig. 15 shows, that at a high persistence, three distinct minima with
low standard deviation and a single maximum with a larger standard
deviation emerge. This confirmed the expectation of the domain ex-
perts of four distinct modes of combustion in one intuitive and easily
accessible illustration. In particular, as can be seen from the regression
curves, the maximum in temperature corresponds to the main com-
bustion mode where fuel and oxidizer are present in stoichiometric
proportions. In this case, fuel and oxygen react to mutually annihilate
each other and form products—corresponding to the large standard de-
viation of the peak—-releasing heat in the process. The three distinct
minima correspond to:

(a) extinction, where the mixing of fuel and oxidizer is highly tur-
bulent and blows the flame out, resulting in a large amount of
HO2;

(b) pure fuel (H2 and CO), where no chemical reaction occurs due
to the lack of oxidizer; and

(c) pure oxidizer (O2), again with no chemical reaction due to the
lack of fuel.

For comparison, Fig. 16(a) shows a projection of all points onto the

(a) (b)

Fig. 14. The proposed approach illustrated on a structured input do-
main. Mini mental state examination (MMSE) scores as a function on
magnetic brain resonance images. The regression curve (b) and an ax-
ial slice of the constructed volume (a, bottom) from the regression curve
at MMSE score 23.14 and the corresponding gradient (a, top) with red
a positive (increasing voxel intensity) and green negative (decreasing
voxel intensity) direction. The gradient indicates that with decreasing
MMSE scores the ventricle size increases.

first two principal components. Two of the minima are readily visible,
however the third minima is hidden in this projection.

6.2 Climate Simulations

With the rising sophistication and accuracy of current climate sim-
ulations their predictive capabilities are increasingly called upon to
inform national and international policy. In this context, the ability
to estimate the likelihood of a given prediction and a quantification
of potential uncertainties is crucial. To answer this need a concerted
effort has been made to better understand the uncertainties involved
in climate simulations [57, 37, 51]. One of the most common tech-
niques to analyze uncertainties in a climate simulation is to create an
ensemble of simulations for varying input parameters. In this case
our data set consists of 593 runs of a recent version of the Community
Atmosphere Model 3, a global atmosphere model developed at the Na-
tional Center for Atmospheric Research (NCAR). Within the ensem-
ble, 21 input parameters describing various aspects of the atmospheric
physics are varied within ranges determined by experts. The resulting
21-dimensional domain is scaled into the unit box. For each instanti-
ation a large number of local and global variables are recorded, such
as, the global energy output or average temperature. As an example,
we use the total upward long wave flux, a measure of how much long
wave (i.e. thermal) radiation is leaving the planet. Analyzing, the long
wave flux as a function of the inputs reveals a single global minimum
and two strong local maxima, see Fig. 17. The two resulting crystals
show two markedly different regimes leading to an equally high long
wave flux. In particular, one maximum shows a minimal value for
tau and a maximal value of cmftau while the other shows the opposite
behavior. Interestingly, both parameters are related to convection, the
thermal driven upwelling of warm, moist air. While tau defines the
time scale (and thus the rate of energy conversion) for deep convection
happening above 500 hPa; cmftau does so for shallow convection hap-
pening below 500 hPa. A possible explanation for the observed strong
inverse relation of these two convection schemes is the need for both
schemes to work in tandem to create clouds which prevent long wave
energy from escaping. An imbalance in the two convection schemes
may ultimately result in fewer clouds and thus a higher long wave flux.

3http://www.ccsm.ucar.edu/models/atm-cam
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Fig. 15. Chemical composition in relation to heat released during a jet
flame combustion simulation. The three distinct minima correspond to
pure fuel, pure oxidizer and extinction/reignition. Graphs of chemical
composition plotted against temperature for the crystals corresponding
to extinction (a), pure oxidizer (b) and pure fuel (c) minima compositions.

Our analysis, for the first time, demonstrated a significant influ-
ence of tau and cmftau on the longwave flux something not apparent
in standard statistical approaches. For example, direct linear regres-
sion on cmftau and tau in relation to flux results in p-values of 0.005
and 0.6822, respectively. A multiple linear regression model with fea-
ture selection based on the Bayesian information criterion (BIC) [48]
rejects both cmftau and tau from the best-scoring models. Even a ker-
nel regression surface of long wave flux on cmftau and tau (shown in
Fig. 16(b) for a particular kernel bandwidth (the observation holds re-
gardless of bandwidth) fails to reveal their combined strong relation to
thermal radiation.

7 CONCLUSION

The applications demonstrate that the approach presented here is capa-
ble of detecting complicated interactions in high dimensional data sets.
Validation of the visualization by domain experts confirms this claim
and provides strong evidence of the usefulness of the technique. This
represents an important first step to build further applications based on
the proposed framework.

For a future study, linear instead of a nonparametric regression
could be used to support the automatic detection of statistical signifi-
cant correlations. In very high dimensional settings, such quantitative
evaluations would provide a tool to guide users towards interesting
regions and parameters. The climate model simulations take signif-
icant amount of resources to run and an important open challenge is
to provide guidance for interesting future parameter settings based on
previous runs.

For the dimension reduction of the simplified Morse-Smale com-
plex, several alternate approaches are possible. Extension to manifold
structured domains is an interesting future direction. However, several
points need to be addressed. The inverse regression could be based
on manifold coordinates or the original data space changing the in-
terpretation of the regression curves. If the manifold learning is used
as a preprocessing step the effect on the Morse-Smale complex needs
to be investigated. The dimension reduction could introduce spurious
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Fig. 16. (a) A projection of the combustion data onto the first two prin-
cipal components, colored by temperature. The ⊗ show the location of
the extremal points computed from the approximate Morse-Smale com-
plex on the high dimensional data. The projection reveals only two of the
three persistent minima. (b) A kernel regression of the thermal radiation
in the climate data on cmftau and tau does not show a strong influence
on thermal radiation, even with a small kernel bandwidth of 0.15.

! !

Fig. 17. Climate simulation parameter analysis in relation to upward
long wave flux. A very strong inverse relationship between tau and cmf-
tau is visible, both related to cloud formation. An imbalance in those
parameters may prevent cloud formation which would lead to a large
flux.

extrema, on the other hand the effects of noisy observations can be
reduced.
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