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BRIAN SUMMA and GIORGIO SCORZELLI
University of Utah
MING JIANG
Lawrence Livermore National Laboratory
PEER-TIMO BREMER
University of Utah and Lawrence Livermore National Laboratory
and
VALERIO PASCUCCI
University of Utah

This article presents a simple framework for progressive processing of
high-resolution images with minimal resources. We demonstrate this frame-
work’s effectiveness by implementing an adaptive, multi-resolution solver
for gradient-based image processing that, for the first time, is capable of
handling gigapixel imagery in real time. With our system, artists can use
commodity hardware to interactively edit massive imagery and apply com-
plex operators, such as seamless cloning, panorama stitching, and tone
mapping.

We introduce a progressive Poisson solver that processes images in a
purely coarse-to-fine manner, providing near instantaneous global approxi-
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mations for interactive display (see Figure 1). We also allow for data-driven
adaptive refinements to locally emulate the effects of a global solution.
These techniques, combined with a fast, cache-friendly data access mecha-
nism, allow the user to interactively explore and edit massive imagery, with
the illusion of having a full solution at hand. In particular, we demonstrate
the interactive modification of gigapixel panoramas that previously required
extensive offline processing. Even with massive satellite images surpassing
a hundred gigapixels in size, we enable repeated interactive editing in a
dynamically changing environment. Images at these scales are significantly
beyond the purview of previous methods yet are processed interactively us-
ing our techniques. Finally our system provides a robust and scalable out-of-
core solver that consistently offers high-quality solutions while maintaining
strict control over system resources.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/
Image Generation; I.4.3 [Image Processing and Computer Vision]: En-
hancement; I.4.10 [Image Processing and Computer Vision]: Image Rep-
resentation—Hierarchical

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Poisson equation, gradient domain edit-
ing, gigapixel images, out-of-core processing, cache-oblivious data layout
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1. INTRODUCTION

Gigapixel images are increasingly popular due to the availability of
high-resolution cameras and inexpensive robots for the automatic
capture of large image collections [GigaPan ]. These tools simplify
the acquisition of large, stitched panoramas, which are becoming
easily accessible over the Internet. Even larger images, massive
in size, are freely distributed, such as aerial satellite photography
from the United States Geological Survey (USGS) Web site. Yet,
the full potential of such imagery is only realized by artists and
analysts enhancing, manipulating, and/or compositing the original
images. However, such editing typically requires significant offline
processing and computing resources beyond what can be typically
expected.
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Poisson Image Processing. A variety of gradient-based methods
provide a popular, but computationally expensive, set of techniques
for advanced image manipulation. Given a guiding gradient field
constructed from one or multiple source images, these techniques
attempt to find a closest-fit image using some predetermined dis-
tance metric. This basic concept has been adapted for standard
image editing [Pérez et al. 2003], as well as more advanced mat-
ting [Sun et al. 2004] operations, and high-level drag-and-drop func-
tionality [Jia et al. 2006]. Furthermore, gradient-based techniques
can tone map high dynamic range images to display favorably on
standard monitors [Fattal et al. 2002] or hide the seams in panora-
mas [Pérez et al. 2003; Levin et al. 2004; Agarwala et al. 2004;
Kazhdan and Hoppe 2008]. Other applications include detecting
lighting [Horn 1974] or shapes from images [Weiss 2001], remov-
ing shadows [Finlayson et al. 2002] or reflections [Agrawal et al.
2005a], and gradient domain painting [McCann and Pollard 2008].
Recently, an alternative approach using mean-value coordinates has
smoothly interpolated the boundary offset between source images,
thereby mimicking Dirichlet boundary conditions [Farbman et al.
2009]. This promising new line of research has yet to show support
of Poisson techniques such as tone mapping, the ability to work
well out-of-core, or consistently acceptable results for methods that
typically require Neumann boundary conditions.

Poisson Solvers. The solution to a 2D Poisson problem lies at the
core of gradient-based image processing. Poisson equations have
wide utility in many engineering and science applications. Comput-
ing their solution efficiently has been the focus of a large body of
work and even a cursory review is beyond the scope of this article.
For small images, methods exist to find the direct analytical solu-
tion using Fast Fourier transforms [Hockney 1965; Agrawal et al.
2005b; 2006; McCann 2008]. Simchony and Chellappa [1990] pro-
vides a survey of these methods for computer vision applications.
Often the problem is simplified by discretization into a large linear
system whose dimension is typically the number of pixels in an im-
age. If this system is small enough to fit into memory, methods exist
to find the direct solution and we refer the reader to Dorr [1970]
who provides an extensive review on direct methods. Typically, it-
erative Krylov subspace methods, such as conjugate gradient, are
used due to their fast convergence. For much larger systems, mem-
ory consumption is the limiting factor and iterative solvers, such as
Successive Over-Relaxation (SOR) [Axelsson 1994], become more
attractive.

Depending on the application, different levels of accuracy may be
required. Sometimes, a coarse approximation is sufficient to achieve
the desired result. Bilateral upsampling methods [Kopf et al. 2007b]
operating on a coarse solution produce good results for applications
such as tone mapping. Such methods have not yet been shown to
handle applications such as image stitching where the interpolated
values are typically not smooth at the seams between images.

When pure upsampling is insufficient, the system must be solved
fully. Multigrid methods are often employed to aid the convergence
of an iterative solver. Such methods have proven particularly ef-
fective by dealing with the large-scale trends at coarse resolutions.
These techniques include preconditioners [Gortler and Cohen 1995;
Szeliski 2008] and multigrid solvers [Brandt 1977; Briggs et al.
2000]. There exist different variants of multigrid algorithms us-
ing either adaptive [Berger and Colella 1989; Kazhdan et al. 2006;
Bolitho et al. 2007; Agarwala 2007; Ricker 2008] or nonadaptive
meshes [Kazhdan 2005; Kazhdan and Hoppe 2008]. As a first step
in a complete multigrid system, the mesh is coarsened. The Poisson
equation can then be solved in a coarse-to-fine manner. One full
iteration, from fine to coarse and back, is typically called a V-cycle.

Most recently, a V-cycle was implemented in a streaming fashion
for large panoramas [Kazhdan and Hoppe 2008]. However, other
systems only implement part of the V-cycle. Kopf et al. [2007b]
implement only the second half in a pure upsampling procedure,
while Bolitho et al. [2007] implement a purely coarse-to-fine solver
also called cascadic [Bornemann and Krause 1996]. Lischinski et
al. [2006] applied this pure coarse-to-fine approach for interac-
tive tonal adjustment. Our method (for the first time) shows that a
cascadic approach has applications well beyond the adjustment of
tonal values and can be used for a wide variety of gradient-based
image processing techniques. We also extend such techniques to
allow the interactive editing and processing of gigapixel images. As
discussed in Section 2, the solver propagates sufficient information
from coarse to fine, allowing us to achieve local solutions at interac-
tive rates that are virtually indistinguishable from the full-resolution
solution.

Out-of-Core Methods. Toledo [Toledo 1999] presents a survey of
general out-of-core algorithms for linear systems. The majority of
algorithms surveyed assume that at least the solution vectors can
be kept in main memory, which is not the case for large images.
For out-of-core processing of large images, the streaming multi-
grid method of Kazhdan and Hoppe [2008] has so far provided the
only solution. However, processing a three-gigapixel image using
this technique still takes well over an hour which does not sup-
port an interactive trial-and-error artistic process. Many algorithms
such as tone mapping require careful parameter tuning to achieve
good results. Thus, waiting hours to examine the effects of a single
parameter change is not feasible in this context.

An additional disadvantage of traditional out-of-core methods is
their tendency to achieve a low memory footprint at the cost of sig-
nificantly proliferating the disk storage requirements. For example,
the multigrid method [Kazhdan and Hoppe 2008] requires auxiliary
storage an order of magnitude greater than the input size, almost half
of which is due to gradient computation. In contrast, our approach
completely avoids such data proliferation, thereby allowing the pro-
cessing of data which already pushes the boundaries of available
storage.

The multigrid method [Kazhdan and Hoppe 2008] is also limited
by main memory usage since it is proportional to the number of
iterations of the solver. This can cause the method to not achieve
acceptable results for images that may require a large number of
iterations, as shown in Section 4. Our method’s memory usage is
independent of the number of iterations of the Poisson solver, and
therefore scales gracefully in these cases.

Out-of-Core Data Access. Given an image, it is well known that
the standard row-major order exhibits good locality in only one di-
mension and is therefore ill-suited for an unconstrained out-of-core
storage scheme [Vitter 2001]. Previous out-of-core Poisson meth-
ods [Kazhdan and Hoppe 2008] have been noted to be severely
limited by this constraint. Instead, indexing based on various space-
filling curves [Sagan 1994] has been proposed in different appli-
cations [Niedermeier et al. 1997; Griebel and Zumbusch 1999;
Balmelli et al. 1999; Lawder and King 2000] to exploit their in-
herent geometric locality. Of particular interest is the Z-order (also
called Lebesgue-order) [Balmelli et al. 1999; Pascucci and Frank
2002] since it allows an especially simple conversion to and from
standard row-major indices. While Z-order exhibits good locality
in all dimensions, it does so only at a fixed resolution and does not
support hierarchical access. Instead, our system has the ability to
use the hierarchical variant, called HZ-order, proposed by Pascucci
and Frank [2002].
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Fig. 1. The Edinburgh panorama 16, 950 × 2, 956 pixels. (Top) Our coarse solution computed at a resolution of 0.7 megapixels; (middle) the same panorama
solved at full resolution with our progressive global solver scaled to approximately 12 megapixel for publication; (bottom left) a detail view of a particularly
bad seam from the original panorama; (bottom middle) the problem area previewed using our adaptive local refinement; (bottom right) the problem area solved
at full resolution using our global solver in 3.48 minutes. Data courtesy of Brian Curless.

Contributions. We introduce a simple and lightweight framework
that provides the user with the illusion of a full Poisson system
solve at interactive frame rates for image editing. This framework
also allows for the computation of a full solution with a simple
approach, rivaling the runtime of the current best out-of-core tech-
nique [Kazhdan and Hoppe 2008] while producing equal- or higher-
quality results on images that require a large number of iterations.
Our system is flexible enough to handle different hierarchical im-
age formats such as tiling for higher-quality images or HZ-order for
greater I/O speed (see Section 3). In particular, through exploiting a
new implicit kd-tree hierarchy for HZ-order, the framework needs
only to access and solve visible pixels (see Appendix A). This al-
lows an artist to interactively apply gradient-based techniques to
images gigapixels in size. Our framework is straightforward and
requires neither complicated spatial indexing nor advanced caching
schemes. In particular our contributions are:

—a coarse-to-fine progressive Poisson solver running at interactive
frame rates, extended to a wide variety of gradient domain tasks,
with the ability to scale to gigapixel images. This cascadic solver
entirely avoids the coarsening stage of the V-cycle yet produces
high-quality results;

—a method to locally refine solutions having time and space re-
quirements that are linearly dependent on the screen resolution
rather than the resolution of the input image;

—a full out-of-core solver that maintains strict control over system
resources, rivals the runtimes for the best known method and
consistently achieves quality results where previous methods may
not converge well in practice; and

—a lightweight streaming framework that provides adaptive multi-
resolution access to out-of-core images in a cache-coherent man-
ner, without using intricate indexing data structures or precaching
schemes.

Progressive, interruptible computations and adaptive refinements
allow our system to maintain interactive rates under constant change
of input parameters even while processing the highest resolution of
the image data (see Figure 1). As such, this approach achieves a
new level of scalability compared to previous techniques based on
streaming [Kazhdan and Hoppe 2008] or quad-tree [Agarwala 2007]
computations, which allowed for highly efficient but offline com-
putations. In the accompanying video, we demonstrate the practical
use of our method for editing massive imagery in an interactive
environment.

2. PROGRESSIVE POISSON SOLVER

This section briefly reviews the Poisson system at the foundation
of gradient domain image processing. Subsequently, we discuss
a progressive framework for solving very large Poisson systems
in massive image editing. This technique allows for a simple im-
plementation, yet is highly scalable, and performs well even with
limited storage and processing resources.

2.1 Gradient Domain Image Processing

Gradient domain image processing encompasses a family of tech-
niques that manipulate an image based on the value of a gradient
field rather than operating directly on the pixel values. Seamless
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cloning, panorama stitching, and high dynamic range tone mapping
are all techniques that belong to this class. Given a gradient field
�G(x, y), defined over a domain � ⊂ �2, we seek to find an image
P (x, y) such that its gradient ∇P fits �G(x, y).

In order to minimize ‖∇P − �G‖ in a least squares sense, one has
to solve the following optimization problem.

min
P

∫∫
�

‖∇P − �G‖2 (1)

It is well known that minimizing Eq. (1) is equivalent to solving
the Poisson equation �P = div �G(x, y) where � denotes the
Laplace operator �P = ∂2P

∂x2 + ∂2P

∂y2 and div �G(x, y) denotes the

divergence of �G.
To adapt the equations shown before to discrete images, we ap-

ply a standard finite difference approach which approximates the
Laplacian as

�P (x, y) = P (x + 1, y) + P (x − 1, y) +
P (x, y + 1) + P (x, y − 1) − 4P (x, y) (2)

and the divergence of �G(x, y) = (Gx(x, y), Gy(x, y)) as

div �G(x, y) = Gx(x, y) − Gx(x − 1, y) +
Gy(x, y) − Gy(x, y − 1).

The differential form �P = div �G(x, y) can therefore be dis-
cretized into the following sparse linear system.

Lp = b (3)

Each row of the matrix L stores the weights of the standard five
point Laplacian stencil given by (2), p is the vector of pixel colors,
and b encodes the guiding gradient field, as well as the boundary
constraints. The choice of guiding gradient field �G(x, y) and bound-
ary conditions for the system determines which image processing
technique is applied. In the case of seamless cloning, it is necessary
to use Dirichlet boundary conditions, set to be the color values of
the background image at the boundaries, and the guiding gradi-
ent to be the gradient of the source image (see Pérez et al. [2003]
for a detailed description). For tone mapping and image stitching,
Neumann boundary conditions are used. The guiding gradient field
for image stitching is the composited gradient field of the original
images. The unwanted gradient between images is commonly set
to zero or averaged across the stitch. The guiding gradient for tone
mapping is adjusted from the original pixel values to compress the
HDR range (see Fattal et al. [2002] for more detail). Methods such
as gradient domain painting [McCann and Pollard 2008] allow the
guiding gradient to be user defined.

2.2 Progressive Framework

For an image P of n × n pixels, the Laplace system (3) has n2

independent variables, one per pixel. Computing the entire solution
is therefore expensive both in terms of space and time. For large
images, the space requirements easily exceed the main memory
available on most computers. Moreover, the long computation times
make any interactive application unfeasible.

Acceleration methods try to address either or both of these issues.
The recent adaptive formulation by Agarwala [2007] has been par-
ticularly insightful. By exploiting the smoothness of the solution,
this method was the first to reduce both the cost of the computa-
tion and its memory requirements. The approach by Kazhdan and
Hoppe [2008] demonstrates how a streaming approach can achieve
high performance by optimizing the memory access patterns.

We extend these acceleration techniques and show how to achieve
high-quality local solutions, without the need for solving the en-
tire system. Moreover, we show that coarse approximations are
of acceptable visual quality without the cost of a typical coarsen-
ing stage used in the V-cycle. These new features, coupled with a
simple multi-resolution framework, enable a data-driven interactive
environment that exploits the fact that interactive editing sessions
are always limited by screen resolution. At any given time, a user
only sees either a low-resolution view of the entire image or a
high-resolution view of a small area. We take advantage of this
practical restriction and solve the Poisson equation only for the
visible pixels. This provides performance advantages for interac-
tive sessions, as well as tight control over the memory usage. For
example, even the simple step of computing the gradient of the
full-resolution image can be problematic due to its significant pro-
cessing time and storage requirement. In our approach, we avoid this
problem by estimating gradients on-the-fly using only the available
pixels.

Overall, our interactive system is based on a simple two-tier
approach:

—A global progressive solver provides a near instant coarse approx-
imation of the full solution. This approximation can be refined
up to a desired solution by a lightweight process, often running
in the background and possibly out-of-core. Any time the user
changes input parameters, this process is restarted.

—A local progressive solver provides a quick solution for the visible
pixels. This process is driven by the interactive viewer and uses
as a coarse approximation the best solution available from the
global solver.

These components can be coupled with different multi-resolution
hierarchies as discussed in the next section.

Initial solution. At launch, the system computes a coarse image
for the initial view. A fast 2D direct method using cosine and fast
Fourier transforms by Agrawal [2005b, 2006] is used for this initial
solve for techniques that require Neumann boundaries (stitching,
HDR compression). For methods that require Dirichlet boundaries
(seamless cloning) we using an iterative method such as SOR. To
provide the user with a meaningful preview, we use an initial coarse
resolution of one to two megapixel depending on the physical dis-
play. We have found, in practice, that the fast Fourier solver usually
gives us this approximation in under 2 seconds. This initial solu-
tion is at the core of the progressive refinement defined in the next
paragraph.

Progressive refinement. The goal of progressive refinement is to
increase the resolution of our solution, either locally or globally.
This requires injecting color transport information from coarser to
finer resolutions. In doing so, we exploit the fact that the solution,
away from the seams, tends to be smooth [Agarwala 2007] and up-
sampling the coarse solution gives high-quality results in large areas
of the image. To improve the solution and resolve the problems at
the seams, we run an iterative method, estimating new gradients
from the original pixel data of the finer resolution and using the up-
sampled values as the initial solution estimate. The finer-resolution
gradient field allows the iterative solver to reconstruct the detailed
features of the original image. For the iterative method we allow
the use of either conjugate gradient (for faster convergence) or SOR
(for minimal memory overhead). The iterative solver is assumed to
have converged when the L2 norm of the residual between iterations
is less than 1.0×10−3. In practice there is no perceptible difference
between iterations after this condition is met.
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Fig. 2. Our adaptive refinement scheme using simple difference averaging.
(a) Global progressive up-sampling of the edited image computed by a
background process; (b) view-dependent local refinement based on a 2k×2k

window. In both cases we speed up the SOR solver with an initial solution
obtained by smooth refinement of the solution.

Figure 2 shows the refinement process where we assume for
simplicity that each resolution doubles each dimension separately
and our data is a subsampled hierarchy. In this case, computing
each finer resolution is equivalent to adding new rows (or columns)
to the coarse resolution. Therefore, we know that each new pixel
added has two neighbors from the coarse solution. We can take
the average difference from these two neighbors and apply it to
the original RGB value of the pixel from the new resolution (see
Figure 2(a)). Since the image is subsampled, the average difference
and application to the new pixel is trivial.

In a tiled hierarchy one would need to double both dimensions at
the same time, requiring a simple adjustment to the interpolation.
Each new resolution is treated as new data and the offset is based on
the solution from the previous resolution and the transform between
levels.

Local preview. Combining the coarse, global solve with a pro-
gressively refined local preview is all that is necessary for our inter-
active system. For data requests at resolutions equal or less than our
coarse solution, we simply display the available data. As the user
zooms into an area, the image is progressively refined in a local
region. Since the resolution increase is directly coupled with the
decrease in the extent of the local view, the number of pixels that
must be processed remains constant (see Figure 2(b)). This results
in a logarithmic runtime complexity and constant storage require-
ment, which allows our system to gracefully scale to images orders
of magnitude larger than previously possible.

Progressive full solution. The progressive refinement can be ap-
plied globally to compute a full solution. Since the method requires
a very small overhead, it can easily be run as background process
during the interactive preview. When a new resolution has been
solved, the interactive preview uses the solution as a new coarse ap-
proximation, thereby saving computation during the local adaptive

phase. Like other in-core methods, this progressive global solver
is limited by available system memory. To address this issue, the
global solver has the ability to switch modes to a moving-window
out-of-core progressive solver.

Out-of-Core solver. The out-of-core solver maintains strict con-
trol over memory usage by sweeping the data with a sliding window.
The window traverses the finest desired resolution, which can be
several levels in the hierarchy from the current available solution. If
the jump in resolution is too high, the process can be repeated sev-
eral times. Within each window, the coarse solution is up-sampled
and the new resolution image is solved using the gradients from the
desired resolution. Since the window lives at the desired resolution,
we never need to expand memory beyond the size of the window.
Furthermore, windows are arranged such that they overlap with the
previously solved data in both dimensions to produce a smooth so-
lution. The overlap causes the solver to load and compute some
of the data multiple times. This overlap has an inherent overhead
when compared to an idealized in-core solver. For instance, given
a 1/x overlap, the 4 corners, each 1/x × 1/x in size, are executed
4 times. The 4 strips on the edge of the window, not including
the corners, each 1/x × (1 − 2/x) in size are executed 2 times.
All other pixels, size (1 − 2/x) × (1 − 2/x), are executed once.
Therefore, the overhead computation for this 1/x overlap is given
by: 4/x(1 + 1/x). Moreover, the I/O overhead can be reduced to
1/x, since we can retain pixel data from the previous window in the
primary traversal direction. In principle, a larger overlap between
windows results in higher-quality solutions, though in practice we
have found that for a 1024×1024 window a 1/32 overlap is sufficient
for good results (see Figures 1 and 5). This overlap requires only a
12.8% compute overhead and a 3.1% I/O overhead. A larger win-
dow can be used to reduce the percentage overlap while achieving
the same-quality results. For instance, by doubling the window size
in both dimensions, a 2048×2048 window can be computed with a
1/64 overlay, only incurring a 6.3% compute overhead and a 1.5%
I/O overhead. Figure 7 shows that, compared to the exact analyti-
cal solution, our method produces even higher-quality results than
the best known method [Kazhdan and Hoppe 2008] for equivalent
runtimes.

3. DATA ACCESS

Our progressive solver can operate well on multiple hierarchical
schemes. Tiled hierarchies are often used to produce smoother, an-
tialiased images, though high-contrast areas in the original image
may be lost in the smoothing. As Figure 3 bottom shows, the tiled
image is visually pleasing, but details such as the cars on the high-
way are lost. This visual smoothness can also come at the cost
of significant preprocessing, reduced flexibility when dealing with
missing data, and increased I/O when traversing the data. The costs
can be especially significant for massive data if one has to process it
with very limited resources. The least costly image hierarchy can be
computed by subsampling. Subsampling is simple and lightweight,
but is prone to high-frequency aliasing. It does, though, retain higher
contrast at the coarse resolution. Figure 3 top shows how the sub-
sampled hierarchy has aliasing artifacts, but also retains enough
contrast to see the cars on the highway. This contrast may be ben-
eficial for some applications, such as an analyst studying satellite
imagery.

To show the flexibility of our interactive system, we support
both a filtered tiled hierarchy and a subsampled hierarchy (see
Figure 4). For a tiled scheme, we compute the image hierarchy using
a Gaussian kernel to produce a smooth, antialiased image (Figure 4
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Fig. 3. Subsampled and tiled hierarchies. Top: A subsampled hierarchy. As
expected, subsampling has the tendency to produce high-frequency aliasing,
though details such as the cars on the highway and in the parking lots are
preserved. Bottom: A tiled hierarchy. This produces a more visually pleasing
image at all resolutions but at the cost of potentially losing information.
The cars are now completely smoothed away. Data courtesy of the U.S.
Geological Survey.

right column). With a minor variation to the underlying I/O layer, our
system also supports a faster, subsampled Hierarchical Z-order as
proposed by Pascucci and Frank [2002] (Figure 4 left column). For
an overview of the HZ data format, see Appendix A.1. To achieve
the level of scalability necessary in the current system, we further
simplify the HZ data access scheme. We use a lightweight recur-
sive algorithm that avoids repeated index computations, provides
progressive and adaptive access, guarantees cache coherency, and
minimizes the number of I/O operations without using any explicit
caching mechanisms. In particular, computing the HZ index with
this new algorithm attains a 30x speedup compared to the previous
work. For example, to compute the indices for a 0.8-gigapixel image
the new algorithm requires 4.7 seconds where the previous method
would take 144.1 seconds. Moreover, since the traversal follows
the HZ storage order exactly for any query window, we guaran-
tee that each file is accessed only once without need of holding
any block of data in cache. For details on our new recursive al-
gorithm see Appendix A.2. This approach makes the system in-
trinsically cache friendly for any realistic caching architecture, and
therefore very flexible in exploiting modern hardware. Conversion
into HZ-order requires no additional storage. On the other hand, for
tiled hierarchies a 1/3 data increase is common. Due to our new
data access scheme, conversion to HZ-order is straightforward and
inexpensive. For our test data, we have found that there is only a
27% overhead due to the conversion compared to just copying the
raw data. In essence, the conversion is strictly a reordering of the
data and requires no operations on the pixel data. This conversion
will outperform even the most simple tiled hierarchies which require
some manipulation of the pixel data.

Each resolution in the HZ hierarchy is in plain Z-order, which
allows for fast, cache-coherent access of subregions of the image.
HZ is not tied to a specific data traversal order, such as the row-
major imposed by traditional file formats, as previously observed
in Kazhdan and Hoppe [2008]. In fact, HZ maintains a high degree
of cache coherency even during adaptive local traversals. In the ac-
companying video1, we show how the locality of our data access
provides graceful performance degradation even in extreme condi-

1accessible through the ACM Digital Library.

Fig. 4. Our progressive framework using subsampled and tiled hierarchies.
(a) A composite satellite image of Atlanta, over 100 gigapixels at full reso-
lution, overlaid on Blue Marble background subsampled; (b) a tiled version
of the same satellite image; (c) the seamless cloning solution using sub-
sampling; (d) the same solution computed using a tiled hierarchy; (e) the
solution offset computed using subsampling; (f) the solution computed using
tiles; (g) a full-resolution portion computed using subsampling; (h) the same
portion using tiling. Note that even though there is a slight difference in the
computed solution, both the tiled and the subsampled hierarchies produce a
seamless stitch with our framework. Data courtesy of the U.S. Geological
Survey and NASA’s Earth Observatory.

tions. In particular, we demonstrate accessing a dataset, of roughly
a terabyte in size, by simply mounting a remote file system over an
encrypted VPN channel via a wireless connection. Even in normal
running conditions, we have found that the I/O overhead
caused by using a tiled hierarchyincreased the running time by
39%–67%. These numbers reflect the theoretical bound of 1/3
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Fig. 5. Panorama of Salt Lake City of 3.27 gigapixel, obtained by stitching 611 images. (a) Mosaic of the original images; (b) Our solution computed at
0.9-megapixel resolution; (c) the full solution provided by our global solver; (d) the difference image between our preview and the full solution at the preview
resolution. Both (a) and (c) have been scaled for publication to approximately 12.9 megapixels.

overhead, made worse by the inability to constrain real queries
to perfect alignment with the boundaries of a quadtree. The ef-
fect of this overhead is detrimental to the scalability of the sys-
tem under more difficult running conditions such as the one men-
tioned earlier. Moreover, HZ easily handles partially converted
data, as we show in one portion of the accompanying video for
the editing of the Salt Lake City panorama. In a tiled scheme,
the entire hierarchy may need to be recomputed as new data is
added.

4. RESULTS

We demonstrate the scalability and interactivity of our approach
on several applications, using a number of images ranging from

megapixels to hundreds of gigapixels in size. To further illustrate the
responsiveness of our system, the accompanying video shows screen
captures of live demonstrations. To highlight particular details and
validate the approach, the figures in this section show previews
and close-ups of our interactive system, alongside the results of
our full out-of-core progressive solver. We also provide running
times of our full out-of-core solver compared with the best current
method, streaming multi-grid [Kazhdan and Hoppe 2008], which
we have verified to use the same gradient information. All timings
and demos were performed on a 64-bit 2.67 GHz Intel Quad Core
desktop, with 8GB of memory. All streaming multigrid timings
were computed from code provided by the authors and include the
timing for the gradient preprocess along with the timing to produce a
solution.
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Our simple framework provides the illusion of a fully solved
Poisson system at interactive frame rates and under continuous pa-
rameter changes with only a simple GL texture for display and
no special hardware acceleration. Therefore, our code is platform
independent. Our simple progressive out-of-core solver produces
robust solutions with runtimes that rival [Kazhdan and Hoppe
2008]. Unlike the previous method, our out-of-core solver does
not use hardware acceleration and did not undergo high code op-
timization to achieve the following runtimes. The solver is also
sequential and uses no threading to accelerate the computation.
If further optimization of the runtimes is desired, there is noth-
ing in our system to prevent the addition of these acceleration
techniques.

Different from other out-of-core methods, we do not rely on large
external memory data structures and we do not need to precompute
gradients for the entire image. For the Salt Lake City panorama,
for example, the streaming multigrid method [Kazhdan and Hoppe
2008] creates 75.2 GB of auxiliary information for a 7.9GB input
image. While disk space is generally assumed to be plentiful, such
an explosion in disk space is unsustainable for images hundreds of
gigapixel in size. The collection of satellite imagery we use in our
video is more than one terabyte in size, and would therefore require
more than 9.5 terabytes of temporary storage.

Edinburgh. 25 images, resolution 16, 950×2, 956, 50 megapixel.
At launch, our system performs a seamless stitch Poisson solve of
a global 0.7-megapixel image in 1.26 seconds using our direct ana-
lytical solver (see Figure 1 top). From this point on, the system can
pan and zoom interactively as if the full solution were already avail-
able. Our local adaptive refinement gives a solution that is visually
equivalent to a solution to the entire system (see Figure 1 bot-
tom row). In the accompanying video, we demonstrate interactive
editing and solving of the Poisson system after the repeated user-
selected replacement of pixels of a particular color. We also perform
a seamless clone of a 2000 × 1600 airplane on Edinburgh’s cloudy
sky. The plane is animated along a linear path across the panorama.
As evident in the video, our framework shows the entire sequence
in real time.We also demonstrate similar interactive editing with the
Redrock panorama (data courtesy of Aseem Agarwala): 9 images,
19, 588×4, 457; 87m megapixels. Given this initial coarse solution,
our method can produce a full solution of Edinburgh (see Figure 1
middle) in 3.48 minutes. The streaming multigrid method requires
3.52 minutes. Figure 10 (left) shows the convergence and error for
our method and streaming multigrid when compared to the ideal
direct solution.

Salt Lake City: 611 images, 126, 826 × 29, 633, 3.27 gigapixel.
A significantly larger example is provided by a panorama captured
with a simple camera mounted on a GigaPan robot [GigaPan ]. To
maximize individual image quality the pictures were taken with
automatic exposure times, which inherently increases the color dif-
ferences between images that need to be corrected by the Poisson
solver. An initial coarse preview of 0.87 megapixel is computed
by our direct analytical solver in 2.07 seconds. Figure 5 shows the
original set of images (a), the panorama that our systems stitches
in real time (b), the global solution provided by our out-of-core
solver (c), and the difference image between the interactive preview
and the final solution at the coarse resolution (d). There are slight
deviations at some of the more challenging seams, but overall there
is negligible visible difference. Our local adaptive preview mimics
well the global solution, as shown in Figure 6. To test the accu-
racy of the methods, we have run a full analytical Poisson solver
on a 485-megapixel subset of the panorama on a HPC computer.
Figures 7(a) and 7(b) show how close our out-of-core solution

Fig. 6. A comparison of our adaptive local preview on a portion of the Salt
Lake City panorama 1/2 of the full resolution. (a) the original Mosaic; (b)
our adaptive preview; (c) the full solution from our global solver; (d) the
difference image between the adaptive preview and the full solution.

Fig. 7. A comparison of our system with the best known out-of-core
method [Kazhdan and Hoppe 2008] and a full analytical solution on a por-
tion of the Salt Lake City panorama, 21201 × 24001 pixels, 485 megapixel.
(a) The full analytical solution; (b) our solution computed in 28.1 minutes;
(c) solution from Kazhdan and Hoppe [2008] computed in 24.9 minutes; (d)
the analytical solution where the solver is allowed to harmonically fill the
boundary; (e) our solution with harmonic fill; (f) solution from Kazhdan and
Hoppe [2008] with harmonic fill; (g) the map image used by all solvers to
construct the panorama where the red color indicates the image that provides
the pixel color and white denotes the panorama boundary.

comes to the exact analytical solution. Figure 7(c) shows that the
multigrid method has yet to converge to an acceptable solution given
an equivalent amount of running time. All solutions were computed
using the map file in Figure 7(g) where the red channel denotes the
image that contributes the color for the pixel in the final panorama
and white denotes the panorama boundary. Finally, all methods al-
low a harmonic fill of this boundary which is shown in Figure 7(d),
7(e), and 7(f). Figure 10 (right) shows the convergence and error
for our method and streaming multigrid when compared to the ideal
direct solution. In particular, our out-of-core solver can compute the
final panorama in 4.16 hours. At 24 iterations, the multigrid method
has yet to converge to a proper solution after running for 4.4 hours.
Unfortunately any additional iterations cause the multigrid code to
fail, since the number of iterations linearly increases the memory
usage of the method.
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Fig. 8. Application of our method to HDR image compression. (a) Original
synthetic HDR image of an adaptively refined Sierpinki sponge generated
with Povray; (b) Tone mapped image with recovery of detailed information
previously hidden in the shadows; (c) the Belgium House image solved using
our coarse-to-fine method with an initial 16 x 12 coarse solution (α = 0.01,
β = 0.7, compression coefficient= 0.5); (d) the direct analytical solution.
Image courtesy of Raanan Fattal.

Sierpinki Sponge: resolution 128k×128k, 16 gigapixel. We have
tested the tone mapping application on a synthetic high dynamic
range image generated with [MegaPOV ]. In this image we use a
partially refined model of a Sierpinki sponge to create high varia-
tions in level-of-detail. Such details can be completely hidden in the
dark areas under projected shadows. We follow the approach intro-
duced by Fattal et al. [2002] to reconstruct the information hidden
in the dark regions. To validate the approach, we’ve run a typical
HDR test image, the Belgium House, progressively refined from a
16 × 12 coarse solution. Even with such a coarse initial solution,
we achieve results very close to the exact solution (see Figure 8(c)
and 8(d)). Figure 8 shows the original sponge model (a) and the
processed version (b), where all the details under the shadows have
been recovered.

Satellite Imagery: Blue Marble background, 3.7-gigapixel. At-
lanta and other cities, over 100-gigapixel. To demonstrate the scala-
bility of our system, we have run the seamless cloning algorithm for
entire cities over a variety of realistic backgrounds from NASA’s
Blue Marble Collection [NASA ] (see Figure 9). In the accom-
panying video, we show how a user can take advantage of these
capabilities to achieve artistic effects and create virtual worlds from
real data. We also create a dynamic environment by animating the
background world map over 12 months and concurrently use the
Poisson solver to show how the appearance of a city would change
across the seasons.

5. CONCLUSIONS

This article describes a new lightweight system that allows, for
the first time, interactive performance for gradient domain image
processing on massive images surpassing 100 gigapixels in size.
We achieve this result by combining: (i) a purely coarse-to-fine

Fig. 9. Satellite imagery collection with a background given by a 3.7-
gigapixel image from NASA’s Blue Marble Collection. The progressive
Poisson solver allows the application of the seamless cloning method to
two copies of the city of Atlanta, each of 116 gigapixels. An artist can
interactively place a copy of Atlanta under shallow water and recreate the
lost city of Atlantis. Data courtesy of the U.S. Geological Survey and NASA’s
Earth Observatory.

progressive Poisson solver, (ii) an adaptively refined mechanism
integrated with the Poisson system, (iii) an out-of-core solver to
provide a full solution, and (iv) a fast cache-coherent data access
method for large images.

At any time, the system provides a user with the illusion of
a fully converged solution, while allowing interactive changes in
resolution and parameters. The new framework represents a novel
paradigm for interacting with extreme resolution imagery, based on
computing screen resolution sized previews in real time and using
out-of-core computation without the need of expanding the input
size by orders of magnitude.

One can envision expanding this framework with other image
processing tools to allow comprehensive editing of massive images
on regular desktop computers. Such expansion seems now to be an
attainable goal since the Poisson solver presented in this article is
one of the most sophisticated and computationally intensive image
editing techniques.

APPENDIX

A. HIERARCHICAL Z-ORDER

In this section we review the fundamentals of the hierarchical Z-
order (HZ-order) for 2D arrays, that is at the core of our data
management scheme. We also provide a new, simple algorithm for
accessing data organized in HZ-order, while avoiding the repeated
index conversions used in Pascucci and Frank [2002].

A.1 Previous Work

In the 2D case the Z-order curve can be defined recursively by
a Z shape whose vertices are replaced by Z shapes half its size
(see Figure 11(a)). Given the binary row-major index of a pixel
(in . . . i1i0, jn . . . j1j0) the corresponding Z-order index I is com-
puted by interleaving the indices I = jnin . . . j1i1j0i0 (see Fig-
ure 12(a) step 1).

While Z-order exhibits good locality in all dimensions, it does
so only at full resolution and does not support hierarchical access.
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Fig. 10. The RMS error when compared to the ideal analytical solution as we increase iterations for both methods. Streaming multigrid has better convergence
and less error for the Edinburgh example (left), though our method remains stable for the larger Salt Lake City panorama (right). Notice that every plot has
been scaled independently to best illustrate the convergency trends of each method.

Fig. 11. (a) The first four levels of the Z-order space filling curve; (b) 4x4
array indexed using standard Z-order.

Instead, our system uses the hierarchical variant, called HZ-order,
proposed by Pascucci and Frank [2002]. This new index changes
the standard Z-order of Figure 11(b) to be organized by levels corre-
sponding to a subsampling binary tree, in which each level doubles
the number of points in one dimension (see Figure 12(b)). This pixel
order is computed by adding a second step to the index conversion.
To compute an HZ-order index Î , the binary representation of a
given Z-order index I is shifted to the right until the first 1-bit exits.
During the first shift, a 1-bit is added to the left and 0-bits are added
in all following shifts (see Figure 12(a)).

We store the data in a way guaranteeing efficient access to any
sub-region without internal caching and without opening a data
block more than once. Furthermore, we allow for storage of in-
complete arrays. In our storage format, we first sort the data in
HZ-order and group consecutive samples in blocks of constant size.
A sequence of consecutive blocks is grouped into a record and
records are clustered in groups which are organized hierarchically.
Each record has a header specifying which of its blocks are actually
present and if the data is stored raw or compressed. Groups can
miss entire records or subgroups, implying that all their respective
blocks and records are missing.

The file format is implemented via a header file describing the
various parameters (dimension, block size, record size, etc.) and
one file per record. The hierarchy of groups is implemented as a
hierarchy of directories each containing a predetermined maximum
number of subdirectories. The leaves of each directory contain only
records. To open a file, one needs only to reconstruct the path of a
record and defer its search to the file system. In particular, the path
of a record is constructed as follows: we take the HZ-address of

Fig. 12. (a) Address transformation from row-major index (i, j ) to Z-order
index I (step 1) and then to hierarchical Z-order index (step 2); (b) levels of
the hierarchical Z-order for a 4x4 array. The samples on each level remain
ordered by the standard Z-order.

the first sample in the record, represent it as a string, and partition
it into chunks of characters naming directories, subdirectories, and
the record file. Note that since blocks, records, and groups can be
missing, one is not restricted to arrays of data that cover the entire
index space. In fact, we can easily store even images with different
regions sampled at different resolutions.

A.2 Efficient Multi-Resolution Range Queries

One of the key components of our framework is the ability to quickly
extract rectangular subsets of the input image in a progressive man-
ner. Computing the row-major indices of all samples residing within
a given query box is straightforward. However, efficiently calcu-
lating their corresponding HZ indices is not. Transforming each
address individually results in a large number of redundant com-
putations by repeatedly converting similar indices. To avoid this
overhead, we introduce a recursive access scheme that traverses an
image in HZ-order, while concurrently computing the correspond-
ing row-major indices. This traversal implicitly follows a kd-tree-
style subdivision, allowing us to quickly skip large portions of the
image.
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Fig. 13. Our fast-stack Z-order traversal of a 4x4 array with concurrent index computation.

To better illustrate the algorithm we first describe how to re-
cursively traverse an array in plain Z-order using the 4x4 array of
Figure 11(b) as example. Subsequently, we discuss how to restrict
the traversal to a given query rectangle and finally how the scheme
is adapted to HZ-order.

We use a stack containing tuples of type (split dimension,
I start, min i, max i, min j, max j, num elements). To start the
process we push the tuple t0 =(1,0,0,3,0,3,16) onto the stack.
At each iteration we pop the topmost element t from the stack.
If t contains only a single element we output the current I start
as HZ-index and fetch the corresponding sample. Otherwise, we
split the region represented by t into two pieces along the axis
given by split dimension and create the corresponding tuples
t1 =(0,0,0,3,0,1,8) and t2 =(0,8,0,3,2,3,8). Note that all elements
of t1 and t2 can be computed from t by simple bit manipulation. In
case of a square array, we simply flip the split dimension each time
a tuple is split. However, one can also store a specific split order
to accommodate rectangular arrays. Figure 13 shows the first eight
iteration of the algorithm outputting the first four elements in the
array of Figure 11(b).

To use this algorithm for fast range queries, each tuple is tested
against the query box as it comes off the stack and discarded if no
overlap exists. Since the row-major indices describing the bound-
ing box of each tuple are computed concurrently, the intersection
test is straightforward. Furthermore, the scheme applies, virtually
unchanged, to traverse samples in Z-order that subsample an array
uniformly along each axis, where the subsampling rate along each
axis could be different.

Finally, to adapt the algorithm to HZ-order (see Figure 12(b)),
one exploits the following two important facts:

—One can directly compute the starting HZ index for each level.
For example, in a squared array level 0 contains one sample and
all other levels h contain 2h−1 samples. Therefore the starting HZ
index of level h, I h

start, is 2m−h where m is the number of bits of
the largest HZ index.

—Within each level, samples are ordered according to plain Z-order
and can be traversed with the stack algorithm described before,
using the appropriate subsampling rate.

Using these two facts one can iterate through an array in HZ-order
by processing one level at a time, adding I h

start to the I start index
of each tuple.

In practice, we avoid subdividing the stack tuples to the level of
a single sample. Instead, depending on the platform, we choose a
parameter n and build a table, with the sequence of Z-order indices
for an array with 2n elements. When running the stack algorithm,
each time a tuple t with 2n elements appears, we loop through the
table instead of splitting t . By accessing only the necessary samples
in strict HZ-order, the stack-based algorithm guarantees that only
the minimal number of disk blocks are touched and each block is
loaded exactly once.

For progressively refined zooms in a given area, we can apply this
algorithm with a minor variation. In particular, one would need to
reduce the size of the bounding box represented in a tuple each time
it is pushed back into the stack. In this way, even for a progressively
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refined zoom, one would access only the needed data blocks, each
being accessed only once.
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